Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Org Biomol Chem ; 20(9): 1828-1837, 2022 03 02.
Article in English | MEDLINE | ID: covidwho-1740491

ABSTRACT

Fragments of 1,2,4-triazolo[5,1-c][1,2,4]triazin-7-one are found in many compounds with various types of biological activities, including the antiviral drug Riamilovir (Triazavirin®), which shows activity against SARS-CoV-2 (COVID-19). Therefore, the development of convenient methods for the synthesis of new derivatives of 1,2,4-triazolo[5,1-c][1,2,4]triazin-7-one is always in demand. This review systematizes the information on the most common synthetic methods for constructing the 1,2,4-triazolo[5,1-c][1,2,4]triazin-7-one heterocyclic system.


Subject(s)
Triazines
2.
Molecules ; 27(1)2022 Jan 02.
Article in English | MEDLINE | ID: covidwho-1686893

ABSTRACT

Hypercytokinemia, or cytokine storm, is one of the severe complications of viral and bacterial infections, involving the release of abnormal amounts of cytokines, resulting in a massive inflammatory response. Cytokine storm is associated with COVID-19 and sepsis high mortality rate by developing epithelial dysfunction and coagulopathy, leading to thromboembolism and multiple organ dysfunction syndrome. Anticoagulant therapy is an important tactic to prevent thrombosis in sepsis and COVID-19, but recent data show the incompatibility of modern direct oral anticoagulants and antiviral agents. It seems relevant to develop dual-action drugs with antiviral and anticoagulant properties. At the same time, it was shown that azolo[1,5-a]pyrimidines are heterocycles with a broad spectrum of antiviral activity. We have synthesized a new family of azolo[1,5-a]pyrimidines and their condensed polycyclic analogs by cyclocondensation reactions and direct CH-functionalization and studied their anticoagulant properties. Five compounds among 1,2,4-triazolo[1,5-a]pyrimidin-7-ones and 5-alkyl-1,3,4-thiadiazolo[3,2-a]purin-8-ones demonstrated higher anticoagulant activity than the reference drug, dabigatran etexilate. Antithrombin activity of most active compounds was confirmed using lipopolysaccharide (LPS)-treated blood to mimic the conditions of cytokine release syndrome. The studied compounds affected only the thrombin time value, reliably increasing it 6.5-15.2 times as compared to LPS-treated blood.


Subject(s)
Anticoagulants/pharmacology , Azo Compounds/chemistry , Blood Coagulation/drug effects , Hemorrhage/drug therapy , Pyrimidines/chemistry , Animals , Anticoagulants/chemistry , Hemorrhage/chemically induced , Lipopolysaccharides/toxicity , Male , Rabbits , Rats
3.
J Pharm Sci ; 110(3): 1316-1322, 2021 03.
Article in English | MEDLINE | ID: covidwho-943677

ABSTRACT

Under pandemic-caused emergency, evaluation of the potential of existing antiviral drugs for the treatment of COVID-19 is relevant. Triazavirin, an antiviral drug developed in Russia for per-oral administration, is involved in clinical trials against SARS-CoV-2 coronavirus. This virus has affinity to epithelial cells in respiratory tract, so drug delivery directly in lungs may enhance therapeutic effect and reduce side effects for stomach, liver, kidneys. We elaborated ultrasonic method of triazavirin aerosol generation and investigated the inhalation delivery of this drug in mice. Mean particle size and number concentration of aerosol used in inhalation experiments are 560 nm and 4 × 105 cm-3, respectively. Aerosol mass concentration is 1.6 × 10-4 mg/cm3. Inhalation for 20 min in a nose-only chamber resulted in 2 mg/kg body delivered dose and 2.6 µg/mL triazavirin concentration in blood plasma. Elimination rate constant determined in aerosol administration experiments was ke = 0.077 min-1, which agrees with the value measured after intravenous delivery, but per-oral administration resulted in considerably lower apparent elimination rate constant of pseudo-first order, probably due to non-linear dependence of absorption rate on triazavirin concentration in gastrointestinal tract. The bioavailability of triazavirin aerosol is found to be 85%, which is about four times higher than for per-oral administration.


Subject(s)
Aerosols/administration & dosage , Antiviral Agents/administration & dosage , Azoles/administration & dosage , Nebulizers and Vaporizers , Triazines/administration & dosage , Administration, Inhalation , Administration, Oral , Aerosols/pharmacokinetics , Animals , Antiviral Agents/blood , Antiviral Agents/pharmacokinetics , Azoles/blood , Azoles/pharmacokinetics , Biological Availability , COVID-19/drug therapy , Drug Delivery Systems/instrumentation , Drug Elimination Routes , Equipment Design , Humans , Male , Mice , Triazines/blood , Triazines/pharmacokinetics , Triazoles
SELECTION OF CITATIONS
SEARCH DETAIL