Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
1.
Euro Surveill ; 27(1)2022 01.
Article in English | MEDLINE | ID: covidwho-1613510

ABSTRACT

We estimate the potential remaining COVID-19 hospitalisation and death burdens in 19 European countries by estimating the proportion of each country's population that has acquired immunity to severe disease through infection or vaccination. Our results suggest many European countries could still face high burdens of hospitalisations and deaths, particularly those with lower vaccination coverage, less historical transmission and/or older populations. Continued non-pharmaceutical interventions and efforts to achieve high vaccination coverage are required in these countries to limit severe COVID-19 outcomes.


Subject(s)
COVID-19 , Europe/epidemiology , Hospitalization , Humans , SARS-CoV-2 , Vaccination
2.
Science ; 372(6538)2021 04 09.
Article in English | MEDLINE | ID: covidwho-1476375

ABSTRACT

A severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variant, VOC 202012/01 (lineage B.1.1.7), emerged in southeast England in September 2020 and is rapidly spreading toward fixation. Using a variety of statistical and dynamic modeling approaches, we estimate that this variant has a 43 to 90% (range of 95% credible intervals, 38 to 130%) higher reproduction number than preexisting variants. A fitted two-strain dynamic transmission model shows that VOC 202012/01 will lead to large resurgences of COVID-19 cases. Without stringent control measures, including limited closure of educational institutions and a greatly accelerated vaccine rollout, COVID-19 hospitalizations and deaths across England in the first 6 months of 2021 were projected to exceed those in 2020. VOC 202012/01 has spread globally and exhibits a similar transmission increase (59 to 74%) in Denmark, Switzerland, and the United States.


Subject(s)
COVID-19/transmission , COVID-19/virology , SARS-CoV-2 , Adolescent , Adult , Aged , Aged, 80 and over , Basic Reproduction Number , COVID-19/epidemiology , COVID-19/mortality , COVID-19 Vaccines , Child , Child, Preschool , Communicable Disease Control , England/epidemiology , Europe/epidemiology , Female , Humans , Infant , Male , Middle Aged , Models, Theoretical , Mutation , SARS-CoV-2/genetics , SARS-CoV-2/growth & development , SARS-CoV-2/pathogenicity , Severity of Illness Index , Socioeconomic Factors , United States/epidemiology , Viral Load , Young Adult
3.
Euro Surveill ; 26(39)2021 09.
Article in English | MEDLINE | ID: covidwho-1448678

ABSTRACT

BackgroundTo mitigate SARS-CoV-2 transmission risks from international air travellers, many countries implemented a combination of up to 14 days of self-quarantine upon arrival plus PCR testing in the early stages of the COVID-19 pandemic in 2020.AimTo assess the effectiveness of quarantine and testing of international travellers to reduce risk of onward SARS-CoV-2 transmission into a destination country in the pre-COVID-19 vaccination era.MethodsWe used a simulation model of air travellers arriving in the United Kingdom from the European Union or the United States, incorporating timing of infection stages while varying quarantine duration and timing and number of PCR tests.ResultsQuarantine upon arrival with a PCR test on day 7 plus a 1-day delay for results can reduce the number of infectious arriving travellers released into the community by a median 94% (95% uncertainty interval (UI): 89-98) compared with a no quarantine/no test scenario. This reduction is similar to that achieved by a 14-day quarantine period (median > 99%; 95% UI: 98-100). Even shorter quarantine periods can prevent a substantial amount of transmission; all strategies in which travellers spend at least 5 days (mean incubation period) in quarantine and have at least one negative test before release are highly effective (median reduction 89%; 95% UI: 83-95)).ConclusionThe effect of different screening strategies impacts asymptomatic and symptomatic individuals differently. The choice of an optimal quarantine and testing strategy for unvaccinated air travellers may vary based on the number of possible imported infections relative to domestic incidence.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19 Vaccines , Humans , Pandemics , Quarantine , United Kingdom/epidemiology
4.
BMC Med ; 19(1): 106, 2021 04 27.
Article in English | MEDLINE | ID: covidwho-1204075

ABSTRACT

BACKGROUND: Routine asymptomatic testing using RT-PCR of people who interact with vulnerable populations, such as medical staff in hospitals or care workers in care homes, has been employed to help prevent outbreaks among vulnerable populations. Although the peak sensitivity of RT-PCR can be high, the probability of detecting an infection will vary throughout the course of an infection. The effectiveness of routine asymptomatic testing will therefore depend on testing frequency and how PCR detection varies over time. METHODS: We fitted a Bayesian statistical model to a dataset of twice weekly PCR tests of UK healthcare workers performed by self-administered nasopharyngeal swab, regardless of symptoms. We jointly estimated times of infection and the probability of a positive PCR test over time following infection; we then compared asymptomatic testing strategies by calculating the probability that a symptomatic infection is detected before symptom onset and the probability that an asymptomatic infection is detected within 7 days of infection. RESULTS: We estimated that the probability that the PCR test detected infection peaked at 77% (54-88%) 4 days after infection, decreasing to 50% (38-65%) by 10 days after infection. Our results suggest a substantially higher probability of detecting infections 1-3 days after infection than previously published estimates. We estimated that testing every other day would detect 57% (33-76%) of symptomatic cases prior to onset and 94% (75-99%) of asymptomatic cases within 7 days if test results were returned within a day. CONCLUSIONS: Our results suggest that routine asymptomatic testing can enable detection of a high proportion of infected individuals early in their infection, provided that the testing is frequent and the time from testing to notification of results is sufficiently fast.


Subject(s)
COVID-19 Nucleic Acid Testing/methods , COVID-19/diagnosis , Polymerase Chain Reaction/methods , Bayes Theorem , COVID-19/pathology , Female , Humans , Male
5.
Science ; 371(6538):149-149, 2021.
Article in English | Academic Search Complete | ID: covidwho-1181922

ABSTRACT

The article discusses about the novel variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that caused COVID-19. One of these variant of concern was B.1.1.7 which was first detected in southeast England and spread to become the dominant lineage in the United Kingdom in just a few months.

6.
Lancet Public Health ; 6(3): e175-e183, 2021 03.
Article in English | MEDLINE | ID: covidwho-1164723

ABSTRACT

BACKGROUND: In most countries, contacts of confirmed COVID-19 cases are asked to quarantine for 14 days after exposure to limit asymptomatic onward transmission. While theoretically effective, this policy places a substantial social and economic burden on both the individual and wider society, which might result in low adherence and reduced policy effectiveness. We aimed to assess the merit of testing contacts to avert onward transmission and to replace or reduce the length of quarantine for uninfected contacts. METHODS: We used an agent-based model to simulate the viral load dynamics of exposed contacts, and their potential for onward transmission in different quarantine and testing strategies. We compared the performance of quarantines of differing durations, testing with either PCR or lateral flow antigen (LFA) tests at the end of quarantine, and daily LFA testing without quarantine, against the current 14-day quarantine strategy. We also investigated the effect of contact tracing delays and adherence to both quarantine and self-isolation on the effectiveness of each strategy. FINDINGS: Assuming moderate levels of adherence to quarantine and self-isolation, self-isolation on symptom onset alone can prevent 37% (95% uncertainty interval [UI] 12-56) of onward transmission potential from secondary cases. 14 days of post-exposure quarantine reduces transmission by 59% (95% UI 28-79). Quarantine with release after a negative PCR test 7 days after exposure might avert a similar proportion (54%, 95% UI 31-81; risk ratio [RR] 0·94, 95% UI 0·62-1·24) to that of the 14-day quarantine period, as would quarantine with a negative LFA test 7 days after exposure (50%, 95% UI 28-77; RR 0·88, 0·66-1·11) or daily testing without quarantine for 5 days after tracing (50%, 95% UI 23-81; RR 0·88, 0·60-1·43) if all tests are returned negative. A stronger effect might be possible if individuals isolate more strictly after a positive test and if contacts can be notified faster. INTERPRETATION: Testing might allow for a substantial reduction in the length of, or replacement of, quarantine with a small excess in transmission risk. Decreasing test and trace delays and increasing adherence will further increase the effectiveness of these strategies. Further research is required to empirically evaluate the potential costs (increased transmission risk, false reassurance) and benefits (reduction in the burden of quarantine, increased adherence) of such strategies before adoption as policy. FUNDING: National Institute for Health Research, UK Research and Innovation, Wellcome Trust, EU Horizon 2021, and the Bill & Melinda Gates Foundation.


Subject(s)
COVID-19 Testing/methods , COVID-19/prevention & control , Contact Tracing , Quarantine , COVID-19/epidemiology , Humans , Models, Theoretical
7.
Lancet Public Health ; 6(1): e12-e20, 2021 01.
Article in English | MEDLINE | ID: covidwho-1072035

ABSTRACT

BACKGROUND: Countries have restricted international arrivals to delay the spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). These measures carry a high economic and social cost, and might have little effect on COVID-19 epidemics if there are many more cases resulting from local transmission compared with imported cases. Our study aims to investigate the extent to which imported cases contribute to local transmission under different epidemic conditions. METHODS: To inform decisions about international travel restrictions, we calculated the ratio of expected COVID-19 cases from international travel (assuming no travel restrictions) to expected cases arising from internal spread, expressed as a proportion, on an average day in May and September, 2020, in each country. COVID-19 prevalence and incidence were estimated using a modelling framework that adjusts reported cases for under-ascertainment and asymptomatic infections. We considered different travel scenarios for May and September, 2020: an upper bound with estimated travel volumes at the same levels as May and September, 2019, and a lower bound with estimated travel volumes adjusted downwards according to expected reductions in May and September, 2020. Results were interpreted in the context of local epidemic growth rates. FINDINGS: In May, 2020, imported cases are likely to have accounted for a high proportion of total incidence in many countries, contributing more than 10% of total incidence in 102 (95% credible interval 63-129) of 136 countries when assuming no reduction in travel volumes (ie, with 2019 travel volumes) and in 74 countries (33-114) when assuming estimated 2020 travel volumes. Imported cases in September, 2020, would have accounted for no more than 10% of total incidence in 106 (50-140) of 162 countries and less than 1% in 21 countries (4-71) when assuming no reductions in travel volumes. With estimated 2020 travel volumes, imported cases in September, 2020, accounted for no more than 10% of total incidence in 125 countries (65-162) and less than 1% in 44 countries (8-97). Of these 44 countries, 22 (2-61) had epidemic growth rates far from the tipping point of exponential growth, making them the least likely to benefit from travel restrictions. INTERPRETATION: Countries can expect travellers infected with SARS-CoV-2 to arrive in the absence of travel restrictions. Although such restrictions probably contribute to epidemic control in many countries, in others, imported cases are likely to contribute little to local COVID-19 epidemics. Stringent travel restrictions might have little impact on epidemic dynamics except in countries with low COVID-19 incidence and large numbers of arrivals from other countries, or where epidemics are close to tipping points for exponential growth. Countries should consider local COVID-19 incidence, local epidemic growth, and travel volumes before implementing such restrictions. FUNDING: Wellcome Trust, UK Foreign, Commonwealth & Development Office, European Commission, National Institute for Health Research, Medical Research Council, and Bill & Melinda Gates Foundation.


Subject(s)
COVID-19/epidemiology , COVID-19/transmission , Communicable Diseases, Imported/epidemiology , Epidemics , Internationality , COVID-19/prevention & control , Communicable Diseases, Imported/prevention & control , Humans , Models, Theoretical , Travel/legislation & jurisprudence
8.
Wellcome Open Res ; 5: 78, 2020.
Article in English | MEDLINE | ID: covidwho-1068023

ABSTRACT

We estimate the number of COVID-19 cases from newly reported deaths in a population without previous reports. Our results suggest that by the time a single death occurs, hundreds to thousands of cases are likely to be present in that population. This suggests containment via contact tracing will be challenging at this point, and other response strategies should be considered. Our approach is implemented in a publicly available, user-friendly, online tool.

9.
Lancet Infect Dis ; 21(4): 482-492, 2021 04.
Article in English | MEDLINE | ID: covidwho-989487

ABSTRACT

BACKGROUND: A second wave of COVID-19 cases in autumn, 2020, in England led to localised, tiered restrictions (so-called alert levels) and, subsequently, a second national lockdown. We examined the impact of these tiered restrictions, and alternatives for lockdown stringency, timing, and duration, on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission and hospital admissions and deaths from COVID-19. METHODS: We fit an age-structured mathematical model of SARS-CoV-2 transmission to data on hospital admissions and hospital bed occupancy (ISARIC4C/COVID-19 Clinical Information Network, National Health Service [NHS] England), seroprevalence (Office for National Statistics, UK Biobank, REACT-2 study), virology (REACT-1 study), and deaths (Public Health England) across the seven NHS England regions from March 1, to Oct 13, 2020. We analysed mobility (Google Community Mobility) and social contact (CoMix study) data to estimate the effect of tiered restrictions implemented in England, and of lockdowns implemented in Northern Ireland and Wales, in October, 2020, and projected epidemiological scenarios for England up to March 31, 2021. FINDINGS: We estimated a reduction in the effective reproduction number (Rt) of 2% (95% credible interval [CrI] 0-4) for tier 2, 10% (6-14) for tier 3, 35% (30-41) for a Northern Ireland-stringency lockdown with schools closed, and 44% (37-49) for a Wales-stringency lockdown with schools closed. From Oct 1, 2020, to March 31, 2021, a projected COVID-19 epidemic without tiered restrictions or lockdown results in 280 000 (95% projection interval 274 000-287 000) hospital admissions and 58 500 (55 800-61 100) deaths. Tiered restrictions would reduce hospital admissions to 238 000 (231 000-245 000) and deaths to 48 600 (46 400-50 700). From Nov 5, 2020, a 4-week Wales-type lockdown with schools remaining open-similar to the lockdown measures announced in England in November, 2020-was projected to further reduce hospital admissions to 186 000 (179 000-193 000) and deaths to 36 800 (34 900-38 800). Closing schools was projected to further reduce hospital admissions to 157 000 (152 000-163 000) and deaths to 30 300 (29 000-31 900). A projected lockdown of greater than 4 weeks would reduce deaths but would bring diminishing returns in reducing peak pressure on hospital services. An earlier lockdown would have reduced deaths and hospitalisations in the short term, but would lead to a faster resurgence in cases after January, 2021. In a post-hoc analysis, we estimated that the second lockdown in England (Nov 5-Dec 2) reduced Rt by 22% (95% CrI 15-29), rather than the 32% (25-39) reduction estimated for a Wales-stringency lockdown with schools open. INTERPRETATION: Lockdown measures outperform less stringent restrictions in reducing cumulative deaths. We projected that the lockdown policy announced to commence in England on Nov 5, with a similar stringency to the lockdown adopted in Wales, would reduce pressure on the health service and would be well timed to suppress deaths over the winter period, while allowing schools to remain open. Following completion of the analysis, we analysed new data from November, 2020, and found that despite similarities in policy, the second lockdown in England had a smaller impact on behaviour than did the second lockdown in Wales, resulting in more deaths and hospitalisations than we originally projected when focusing on a Wales-stringency scenario for the lockdown. FUNDING: Horizon 2020, UK Medical Research Council, and the National Institute for Health Research.


Subject(s)
COVID-19/mortality , COVID-19/transmission , Communicable Disease Control , Hospitalization/statistics & numerical data , Models, Statistical , Basic Reproduction Number , England/epidemiology , Epidemics , Forecasting , Hospital Bed Capacity , Hospitals , Humans , Intensive Care Units/statistics & numerical data , Northern Ireland/epidemiology , SARS-CoV-2/isolation & purification , Seroepidemiologic Studies , State Medicine , Wales/epidemiology
10.
BMC Med ; 18(1): 332, 2020 10 22.
Article in English | MEDLINE | ID: covidwho-885986

ABSTRACT

BACKGROUND: Asymptomatic or subclinical SARS-CoV-2 infections are often unreported, which means that confirmed case counts may not accurately reflect underlying epidemic dynamics. Understanding the level of ascertainment (the ratio of confirmed symptomatic cases to the true number of symptomatic individuals) and undetected epidemic progression is crucial to informing COVID-19 response planning, including the introduction and relaxation of control measures. Estimating case ascertainment over time allows for accurate estimates of specific outcomes such as seroprevalence, which is essential for planning control measures. METHODS: Using reported data on COVID-19 cases and fatalities globally, we estimated the proportion of symptomatic cases (i.e. any person with any of fever ≥ 37.5 °C, cough, shortness of breath, sudden onset of anosmia, ageusia or dysgeusia illness) that were reported in 210 countries and territories, given those countries had experienced more than ten deaths. We used published estimates of the baseline case fatality ratio (CFR), which was adjusted for delays and under-ascertainment, then calculated the ratio of this baseline CFR to an estimated local delay-adjusted CFR to estimate the level of under-ascertainment in a particular location. We then fit a Bayesian Gaussian process model to estimate the temporal pattern of under-ascertainment. RESULTS: Based on reported cases and deaths, we estimated that, during March 2020, the median percentage of symptomatic cases detected across the 84 countries which experienced more than ten deaths ranged from 2.4% (Bangladesh) to 100% (Chile). Across the ten countries with the highest number of total confirmed cases as of 6 July 2020, we estimated that the peak number of symptomatic cases ranged from 1.4 times (Chile) to 18 times (France) larger than reported. Comparing our model with national and regional seroprevalence data where available, we find that our estimates are consistent with observed values. Finally, we estimated seroprevalence for each country. As of 7 June, our seroprevalence estimates range from 0% (many countries) to 13% (95% CrI 5.6-24%) (Belgium). CONCLUSIONS: We found substantial under-ascertainment of symptomatic cases, particularly at the peak of the first wave of the SARS-CoV-2 pandemic, in many countries. Reported case counts will therefore likely underestimate the rate of outbreak growth initially and underestimate the decline in the later stages of an epidemic. Although there was considerable under-reporting in many locations, our estimates were consistent with emerging serological data, suggesting that the proportion of each country's population infected with SARS-CoV-2 worldwide is generally low.


Subject(s)
Coronavirus Infections/epidemiology , Pandemics , Pneumonia, Viral/epidemiology , Bayes Theorem , Betacoronavirus , COVID-19 , Humans , SARS-CoV-2 , Seroepidemiologic Studies
11.
BMC Med ; 18(1): 324, 2020 10 14.
Article in English | MEDLINE | ID: covidwho-868555

ABSTRACT

BACKGROUND: The health impact of COVID-19 may differ in African settings as compared to countries in Europe or China due to demographic, epidemiological, environmental and socio-economic factors. We evaluated strategies to reduce SARS-CoV-2 burden in African countries, so as to support decisions that balance minimising mortality, protecting health services and safeguarding livelihoods. METHODS: We used a Susceptible-Exposed-Infectious-Recovered mathematical model, stratified by age, to predict the evolution of COVID-19 epidemics in three countries representing a range of age distributions in Africa (from oldest to youngest average age: Mauritius, Nigeria and Niger), under various effectiveness assumptions for combinations of different non-pharmaceutical interventions: self-isolation of symptomatic people, physical distancing and 'shielding' (physical isolation) of the high-risk population. We adapted model parameters to better represent uncertainty about what might be expected in African populations, in particular by shifting the distribution of severity risk towards younger ages and increasing the case-fatality ratio. We also present sensitivity analyses for key model parameters subject to uncertainty. RESULTS: We predicted median symptomatic attack rates over the first 12 months of 23% (Niger) to 42% (Mauritius), peaking at 2-4 months, if epidemics were unmitigated. Self-isolation while symptomatic had a maximum impact of about 30% on reducing severe cases, while the impact of physical distancing varied widely depending on percent contact reduction and R0. The effect of shielding high-risk people, e.g. by rehousing them in physical isolation, was sensitive mainly to residual contact with low-risk people, and to a lesser extent to contact among shielded individuals. Mitigation strategies incorporating self-isolation of symptomatic individuals, moderate physical distancing and high uptake of shielding reduced predicted peak bed demand and mortality by around 50%. Lockdowns delayed epidemics by about 3 months. Estimates were sensitive to differences in age-specific social mixing patterns, as published in the literature, and assumptions on transmissibility, infectiousness of asymptomatic cases and risk of severe disease or death by age. CONCLUSIONS: In African settings, as elsewhere, current evidence suggests large COVID-19 epidemics are expected. However, African countries have fewer means to suppress transmission and manage cases. We found that self-isolation of symptomatic persons and general physical distancing are unlikely to avert very large epidemics, unless distancing takes the form of stringent lockdown measures. However, both interventions help to mitigate the epidemic. Shielding of high-risk individuals can reduce health service demand and, even more markedly, mortality if it features high uptake and low contact of shielded and unshielded people, with no increase in contact among shielded people. Strategies combining self-isolation, moderate physical distancing and shielding could achieve substantial reductions in mortality in African countries. Temporary lockdowns, where socioeconomically acceptable, can help gain crucial time for planning and expanding health service capacity.


Subject(s)
Coronavirus Infections/prevention & control , Models, Biological , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Adolescent , Adult , Age Distribution , Aged, 80 and over , Betacoronavirus , COVID-19 , Child , Child, Preschool , Cost of Illness , Epidemics , Female , Humans , Male , Middle Aged , Niger , Nigeria , Psychological Distance , SARS-CoV-2 , Uncertainty , Young Adult
12.
Preprint in English | ProQuest Central | ID: ppcovidwho-2102

ABSTRACT

We estimate the number of COVID-19 cases from newly reported deaths in a population without previous reports. Our results suggest that by the time a single death occurs, hundreds to thousands of cases are likely to be present in that population. This suggests containment via contact tracing will be challenging at this point, and other response strategies should be considered. Our approach is implemented in a publicly available, user-friendly, online tool.

13.
Elife ; 92020 08 24.
Article in English | MEDLINE | ID: covidwho-729762

ABSTRACT

A key unknown for SARS-CoV-2 is how asymptomatic infections contribute to transmission. We used a transmission model with asymptomatic and presymptomatic states, calibrated to data on disease onset and test frequency from the Diamond Princess cruise ship outbreak, to quantify the contribution of asymptomatic infections to transmission. The model estimated that 74% (70-78%, 95% posterior interval) of infections proceeded asymptomatically. Despite intense testing, 53% (51-56%) of infections remained undetected, most of them asymptomatic. Asymptomatic individuals were the source for 69% (20-85%) of all infections. The data did not allow identification of the infectiousness of asymptomatic infections, however low ranges (0-25%) required a net reproduction number for individuals progressing through presymptomatic and symptomatic stages of at least 15. Asymptomatic SARS-CoV-2 infections may contribute substantially to transmission. Control measures, and models projecting their potential impact, need to look beyond the symptomatic cases if they are to understand and address ongoing transmission.


Subject(s)
Asymptomatic Diseases , Coronavirus Infections/transmission , Pneumonia, Viral/therapy , Ships/statistics & numerical data , Betacoronavirus/isolation & purification , COVID-19 , Calibration , Coronavirus Infections/epidemiology , Coronavirus Infections/therapy , Humans , Incidence , Models, Statistical , Pandemics , Pneumonia, Viral/epidemiology , SARS-CoV-2
14.
BMC Med ; 18(1): 259, 2020 08 19.
Article in English | MEDLINE | ID: covidwho-721300

ABSTRACT

BACKGROUND: To contain the spread of COVID-19, a cordon sanitaire was put in place in Wuhan prior to the Lunar New Year, on 23 January 2020. We assess the efficacy of the cordon sanitaire to delay the introduction and onset of local transmission of COVID-19 in other major cities in mainland China. METHODS: We estimated the number of infected travellers from Wuhan to other major cities in mainland China from November 2019 to February 2020 using previously estimated COVID-19 prevalence in Wuhan and publicly available mobility data. We focused on Beijing, Chongqing, Hangzhou, and Shenzhen as four representative major cities to identify the potential independent contribution of the cordon sanitaire and holiday travel. To do this, we simulated outbreaks generated by infected arrivals in these destination cities using stochastic branching processes. We also modelled the effect of the cordon sanitaire in combination with reduced transmissibility scenarios to simulate the effect of local non-pharmaceutical interventions. RESULTS: We find that in the four cities, given the potentially high prevalence of COVID-19 in Wuhan between December 2019 and early January 2020, local transmission may have been seeded as early as 1-8 January 2020. By the time the cordon sanitaire was imposed, infections were likely in the thousands. The cordon sanitaire alone did not substantially affect the epidemic progression in these cities, although it may have had some effect in smaller cities. Reduced transmissibility resulted in a notable decrease in the incidence of infection in the four studied cities. CONCLUSIONS: Our results indicate that sustained transmission was likely occurring several weeks prior to the implementation of the cordon sanitaire in four major cities of mainland China and that the observed decrease in incidence was likely attributable to other non-pharmaceutical, transmission-reducing interventions.


Subject(s)
Betacoronavirus , Coronavirus Infections/prevention & control , Health Policy , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Travel , COVID-19 , China/epidemiology , Cities , Coronavirus Infections/epidemiology , Coronavirus Infections/transmission , Humans , Incidence , Models, Theoretical , Pneumonia, Viral/epidemiology , Pneumonia, Viral/transmission , Prevalence , SARS-CoV-2
15.
Euro Surveill ; 25(12)2020 03.
Article in English | MEDLINE | ID: covidwho-15802

ABSTRACT

Adjusting for delay from confirmation to death, we estimated case and infection fatality ratios (CFR, IFR) for coronavirus disease (COVID-19) on the Diamond Princess ship as 2.6% (95% confidence interval (CI): 0.89-6.7) and 1.3% (95% CI: 0.38-3.6), respectively. Comparing deaths on board with expected deaths based on naive CFR estimates from China, we estimated CFR and IFR in China to be 1.2% (95% CI: 0.3-2.7) and 0.6% (95% CI: 0.2-1.3), respectively.


Subject(s)
Clinical Laboratory Techniques/methods , Coronavirus Infections/mortality , Coronavirus/isolation & purification , Disease Outbreaks/prevention & control , Pneumonia, Viral/mortality , Ships , Travel , Adolescent , Adult , Aged , Betacoronavirus , COVID-19 , COVID-19 Testing , Child , Child, Preschool , Contact Tracing , Coronavirus/genetics , Coronavirus Infections/diagnosis , Coronavirus Infections/transmission , Female , Humans , Infant , Infant, Newborn , Male , Middle Aged , Mortality , Pandemics , Pneumonia, Viral/diagnosis , Pneumonia, Viral/transmission , Point-of-Care Systems , Polymerase Chain Reaction , Risk Factors , SARS-CoV-2 , Young Adult
16.
Lancet Public Health ; 5(5): e261-e270, 2020 05.
Article in English | MEDLINE | ID: covidwho-14920

ABSTRACT

BACKGROUND: In December, 2019, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a novel coronavirus, emerged in Wuhan, China. Since then, the city of Wuhan has taken unprecedented measures in response to the outbreak, including extended school and workplace closures. We aimed to estimate the effects of physical distancing measures on the progression of the COVID-19 epidemic, hoping to provide some insights for the rest of the world. METHODS: To examine how changes in population mixing have affected outbreak progression in Wuhan, we used synthetic location-specific contact patterns in Wuhan and adapted these in the presence of school closures, extended workplace closures, and a reduction in mixing in the general community. Using these matrices and the latest estimates of the epidemiological parameters of the Wuhan outbreak, we simulated the ongoing trajectory of an outbreak in Wuhan using an age-structured susceptible-exposed-infected-removed (SEIR) model for several physical distancing measures. We fitted the latest estimates of epidemic parameters from a transmission model to data on local and internationally exported cases from Wuhan in an age-structured epidemic framework and investigated the age distribution of cases. We also simulated lifting of the control measures by allowing people to return to work in a phased-in way and looked at the effects of returning to work at different stages of the underlying outbreak (at the beginning of March or April). FINDINGS: Our projections show that physical distancing measures were most effective if the staggered return to work was at the beginning of April; this reduced the median number of infections by more than 92% (IQR 66-97) and 24% (13-90) in mid-2020 and end-2020, respectively. There are benefits to sustaining these measures until April in terms of delaying and reducing the height of the peak, median epidemic size at end-2020, and affording health-care systems more time to expand and respond. However, the modelled effects of physical distancing measures vary by the duration of infectiousness and the role school children have in the epidemic. INTERPRETATION: Restrictions on activities in Wuhan, if maintained until April, would probably help to delay the epidemic peak. Our projections suggest that premature and sudden lifting of interventions could lead to an earlier secondary peak, which could be flattened by relaxing the interventions gradually. However, there are limitations to our analysis, including large uncertainties around estimates of R0 and the duration of infectiousness. FUNDING: Bill & Melinda Gates Foundation, National Institute for Health Research, Wellcome Trust, and Health Data Research UK.


Subject(s)
Communicable Disease Control , Coronavirus Infections/epidemiology , Coronavirus Infections/prevention & control , Epidemics/prevention & control , Pandemics/prevention & control , Pneumonia, Viral/epidemiology , Pneumonia, Viral/prevention & control , COVID-19 , China/epidemiology , Humans , Models, Theoretical
17.
Lancet Infect Dis ; 20(5): 553-558, 2020 05.
Article in English | MEDLINE | ID: covidwho-7136

ABSTRACT

BACKGROUND: An outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has led to 95 333 confirmed cases as of March 5, 2020. Understanding the early transmission dynamics of the infection and evaluating the effectiveness of control measures is crucial for assessing the potential for sustained transmission to occur in new areas. Combining a mathematical model of severe SARS-CoV-2 transmission with four datasets from within and outside Wuhan, we estimated how transmission in Wuhan varied between December, 2019, and February, 2020. We used these estimates to assess the potential for sustained human-to-human transmission to occur in locations outside Wuhan if cases were introduced. METHODS: We combined a stochastic transmission model with data on cases of coronavirus disease 2019 (COVID-19) in Wuhan and international cases that originated in Wuhan to estimate how transmission had varied over time during January, 2020, and February, 2020. Based on these estimates, we then calculated the probability that newly introduced cases might generate outbreaks in other areas. To estimate the early dynamics of transmission in Wuhan, we fitted a stochastic transmission dynamic model to multiple publicly available datasets on cases in Wuhan and internationally exported cases from Wuhan. The four datasets we fitted to were: daily number of new internationally exported cases (or lack thereof), by date of onset, as of Jan 26, 2020; daily number of new cases in Wuhan with no market exposure, by date of onset, between Dec 1, 2019, and Jan 1, 2020; daily number of new cases in China, by date of onset, between Dec 29, 2019, and Jan 23, 2020; and proportion of infected passengers on evacuation flights between Jan 29, 2020, and Feb 4, 2020. We used an additional two datasets for comparison with model outputs: daily number of new exported cases from Wuhan (or lack thereof) in countries with high connectivity to Wuhan (ie, top 20 most at-risk countries), by date of confirmation, as of Feb 10, 2020; and data on new confirmed cases reported in Wuhan between Jan 16, 2020, and Feb 11, 2020. FINDINGS: We estimated that the median daily reproduction number (Rt) in Wuhan declined from 2·35 (95% CI 1·15-4·77) 1 week before travel restrictions were introduced on Jan 23, 2020, to 1·05 (0·41-2·39) 1 week after. Based on our estimates of Rt, assuming SARS-like variation, we calculated that in locations with similar transmission potential to Wuhan in early January, once there are at least four independently introduced cases, there is a more than 50% chance the infection will establish within that population. INTERPRETATION: Our results show that COVID-19 transmission probably declined in Wuhan during late January, 2020, coinciding with the introduction of travel control measures. As more cases arrive in international locations with similar transmission potential to Wuhan before these control measures, it is likely many chains of transmission will fail to establish initially, but might lead to new outbreaks eventually. FUNDING: Wellcome Trust, Health Data Research UK, Bill & Melinda Gates Foundation, and National Institute for Health Research.


Subject(s)
Betacoronavirus , Coronavirus Infections/transmission , Pneumonia, Viral/transmission , COVID-19 , China/epidemiology , Coronavirus Infections/epidemiology , Humans , Models, Theoretical , Pandemics , Pneumonia, Viral/epidemiology , SARS-CoV-2 , Severe Acute Respiratory Syndrome/epidemiology
18.
Lancet Glob Health ; 8(4): e488-e496, 2020 04.
Article in English | MEDLINE | ID: covidwho-2829

ABSTRACT

BACKGROUND: Isolation of cases and contact tracing is used to control outbreaks of infectious diseases, and has been used for coronavirus disease 2019 (COVID-19). Whether this strategy will achieve control depends on characteristics of both the pathogen and the response. Here we use a mathematical model to assess if isolation and contact tracing are able to control onwards transmission from imported cases of COVID-19. METHODS: We developed a stochastic transmission model, parameterised to the COVID-19 outbreak. We used the model to quantify the potential effectiveness of contact tracing and isolation of cases at controlling a severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-like pathogen. We considered scenarios that varied in the number of initial cases, the basic reproduction number (R0), the delay from symptom onset to isolation, the probability that contacts were traced, the proportion of transmission that occurred before symptom onset, and the proportion of subclinical infections. We assumed isolation prevented all further transmission in the model. Outbreaks were deemed controlled if transmission ended within 12 weeks or before 5000 cases in total. We measured the success of controlling outbreaks using isolation and contact tracing, and quantified the weekly maximum number of cases traced to measure feasibility of public health effort. FINDINGS: Simulated outbreaks starting with five initial cases, an R0 of 1·5, and 0% transmission before symptom onset could be controlled even with low contact tracing probability; however, the probability of controlling an outbreak decreased with the number of initial cases, when R0 was 2·5 or 3·5 and with more transmission before symptom onset. Across different initial numbers of cases, the majority of scenarios with an R0 of 1·5 were controllable with less than 50% of contacts successfully traced. To control the majority of outbreaks, for R0 of 2·5 more than 70% of contacts had to be traced, and for an R0 of 3·5 more than 90% of contacts had to be traced. The delay between symptom onset and isolation had the largest role in determining whether an outbreak was controllable when R0 was 1·5. For R0 values of 2·5 or 3·5, if there were 40 initial cases, contact tracing and isolation were only potentially feasible when less than 1% of transmission occurred before symptom onset. INTERPRETATION: In most scenarios, highly effective contact tracing and case isolation is enough to control a new outbreak of COVID-19 within 3 months. The probability of control decreases with long delays from symptom onset to isolation, fewer cases ascertained by contact tracing, and increasing transmission before symptoms. This model can be modified to reflect updated transmission characteristics and more specific definitions of outbreak control to assess the potential success of local response efforts. FUNDING: Wellcome Trust, Global Challenges Research Fund, and Health Data Research UK.


Subject(s)
Contact Tracing , Coronavirus Infections/prevention & control , Coronavirus/pathogenicity , Disease Outbreaks/prevention & control , Patient Isolation , Pneumonia, Viral/prevention & control , Betacoronavirus , COVID-19 , Coronavirus Infections/diagnosis , Coronavirus Infections/epidemiology , Coronavirus Infections/transmission , Feasibility Studies , Humans , Pneumonia, Viral/diagnosis , Pneumonia, Viral/epidemiology , Pneumonia, Viral/transmission , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL
...