Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
2.
PLoS Med ; 19(5): e1004011, 2022 05.
Article in English | MEDLINE | ID: covidwho-1865332

ABSTRACT

BACKGROUND: Comprehensive information about the accuracy of antigen rapid diagnostic tests (Ag-RDTs) for Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is essential to guide public health decision makers in choosing the best tests and testing policies. In August 2021, we published a systematic review and meta-analysis about the accuracy of Ag-RDTs. We now update this work and analyze the factors influencing test sensitivity in further detail. METHODS AND FINDINGS: We registered the review on PROSPERO (registration number: CRD42020225140). We systematically searched preprint and peer-reviewed databases for publications evaluating the accuracy of Ag-RDTs for SARS-CoV-2 until August 31, 2021. Descriptive analyses of all studies were performed, and when more than 4 studies were available, a random-effects meta-analysis was used to estimate pooled sensitivity and specificity with reverse transcription polymerase chain reaction (RT-PCR) testing as a reference. To evaluate factors influencing test sensitivity, we performed 3 different analyses using multivariable mixed-effects meta-regression models. We included 194 studies with 221,878 Ag-RDTs performed. Overall, the pooled estimates of Ag-RDT sensitivity and specificity were 72.0% (95% confidence interval [CI] 69.8 to 74.2) and 98.9% (95% CI 98.6 to 99.1). When manufacturer instructions were followed, sensitivity increased to 76.3% (95% CI 73.7 to 78.7). Sensitivity was markedly better on samples with lower RT-PCR cycle threshold (Ct) values (97.9% [95% CI 96.9 to 98.9] and 90.6% [95% CI 88.3 to 93.0] for Ct-values <20 and <25, compared to 54.4% [95% CI 47.3 to 61.5] and 18.7% [95% CI 13.9 to 23.4] for Ct-values ≥25 and ≥30) and was estimated to increase by 2.9 percentage points (95% CI 1.7 to 4.0) for every unit decrease in mean Ct-value when adjusting for testing procedure and patients' symptom status. Concordantly, we found the mean Ct-value to be lower for true positive (22.2 [95% CI 21.5 to 22.8]) compared to false negative (30.4 [95% CI 29.7 to 31.1]) results. Testing in the first week from symptom onset resulted in substantially higher sensitivity (81.9% [95% CI 77.7 to 85.5]) compared to testing after 1 week (51.8%, 95% CI 41.5 to 61.9). Similarly, sensitivity was higher in symptomatic (76.2% [95% CI 73.3 to 78.9]) compared to asymptomatic (56.8% [95% CI 50.9 to 62.4]) persons. However, both effects were mainly driven by the Ct-value of the sample. With regards to sample type, highest sensitivity was found for nasopharyngeal (NP) and combined NP/oropharyngeal samples (70.8% [95% CI 68.3 to 73.2]), as well as in anterior nasal/mid-turbinate samples (77.3% [95% CI 73.0 to 81.0]). Our analysis was limited by the included studies' heterogeneity in viral load assessment and sample origination. CONCLUSIONS: Ag-RDTs detect most of the individuals infected with SARS-CoV-2, and almost all (>90%) when high viral loads are present. With viral load, as estimated by Ct-value, being the most influential factor on their sensitivity, they are especially useful to detect persons with high viral load who are most likely to transmit the virus. To further quantify the effects of other factors influencing test sensitivity, standardization of clinical accuracy studies and access to patient level Ct-values and duration of symptoms are needed.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnosis , COVID-19 Testing , Humans , Point-of-Care Systems , Sensitivity and Specificity
3.
EuropePMC; 2022.
Preprint in English | EuropePMC | ID: ppcovidwho-337023

ABSTRACT

Background: Genomic surveillance is essential for monitoring the emergence and spread of SARS-CoV-2 variants. SARS-CoV-2 diagnostic testing is the starting point for SARS-CoV-2 genomic sequencing. However, testing rates in many low- and middle-income countries (LMICs) are low (mean = 27 tests/100,000 people/day) and global testing rates are falling in the post-crisis phase of the pandemic, leading to spatiotemporal biases in sample collection. Various public health agencies and academic groups have produced recommendations on sample sizes and sequencing strategies for effective genomic surveillance. However, these recommendations assume very high volumes of diagnostic testing that are currently well beyond reach in most LMICs. Methods To investigate how testing rates, sequencing strategies and the degree of spatiotemporal bias in sample collection impact variant detection and monitoring outcomes, we used an individual-based model to simulate COVID-19 epidemics in a prototypical LMIC. Within the model, we simulated a range of testing rates, accounted for likely testing demand and applied various genomic surveillance strategies, including sentinel surveillance. Findings Diagnostic testing rates play a substantially larger role in monitoring the prevalence and emergence of new variants than the proportion of samples sequenced. To enable timely detection and monitoring of emerging variants, programs should achieve average testing rates of at least 100 tests/100,000 people/day and sequence 5-10% of test-positive specimens, which may be accomplished through sentinel or other routine surveillance systems. Under realistic assumptions, this averages to ~10 samples for sequencing/1,000,000 people/week. Interpretation For countries where testing capacities are low and sample collection is spatiotemporally biased, surveillance programs should prioritize investments in wider access to diagnostic testing to enable more representative sampling, ahead of simply increasing quantities of sequenced samples. Funding European Research Council, the Rockefeller Foundation, and the Governments of Germany, Canada, UK, Australia, Norway, Saudi Arabia, Kuwait, Netherlands and Portugal.

7.
SSRN; 2022.
Preprint in English | SSRN | ID: ppcovidwho-332348

ABSTRACT

Background: Access to RT-PCR testing, the gold standard for SARS-CoV-2 detection, is limited throughout the world, due to restricted resources, available infrastructure, and high costs. Antigen-detecting, rapid diagnostic tests (Ag-RDTs) overcome some of these barriers, but independent clinical validations in settings of intended use are scarce. To inform the World Health Organisation’s (WHO) emergency use listing (EUL) procedure and ensure affordable, high-quality Ag-RDTs, we assessed the performance and ease-of-use of the SureStatus for SARS-CoV-2. Methods: This prospective, multi-center diagnostic accuracy study recruited unvaccinated participants with presumed SARS-CoV-2 infection in India and Germany from Dec 2019 to Mar 2021 when predominantly alpha (B.1.1.7) variant was circulating. Paired swabs were performed for (i) routine clinical RT-PCR testing (sampling was either nasopharyngeal (NP), or NP/OP combined) and (ii) for Ag-RDT (sampling was nasopharyngeal (NP)). Performance of the Ag-RDT was compared to RT-PCR overall, and according to predefined subgroups e.g., cycle threshold (Ct)-value, symptoms, and days from symptom onset. To understand usability, a System Usability Scale (SUS) questionnaire and ease-of-use (EoU) assessment were performed. Findings: A total of 1119 participants were included in the analysis of whom 205 (18·3%) were RT-PCR positive. SureStatus detected 169 out of 205 RT-PCR positive participants, reporting a sensitivity of 82·4% (95% CI: 76·6%-87·1%) and a specificity of 98·5% (95% CI: 97·4%-99·1%). In the first 7 days post symptom onset sensitivity was 90·7% (95% CI: 83·5%-94·9%). The test was characterized as easy to use (SUS: 85/100) and considered suitable for point-of-care settings although quality concerns were raised due to visibly contaminated packaging of swabs included in the test kits. Interpretation: The SureStatus diagnostic test can be considered a reliable test in the first week of SARS-CoV-2 infection with high sensitivity in combination with excellent usability.

9.
EuropePMC;
Preprint in English | EuropePMC | ID: ppcovidwho-327632

ABSTRACT

Background: Comprehensive information about the accuracy of antigen rapid diagnostic tests (Ag-RDTs) for SARS-CoV-2 is essential to guide public health decision makers in choosing the best tests and testing policies. In August 2021, we published a systematic review and meta-analysis about the accuracy of Ag-RDTs. We now update this work and analyze the factors influencing test sensitivity in further detail. Methods and findings We registered the review on PROSPERO (registration number: CRD42020225140). We systematically searched multiple databases (PubMed, Web of Science Core Collection, medRvix, bioRvix, and FIND) for publications evaluating the accuracy of Ag-RDTs for SARS-CoV-2 until August 31, 2021. Descriptive analyses of all studies were performed, and when more than 4 studies were available, a random-effects meta-analysis was used to estimate pooled sensitivity and specificity with reverse transcription polymerase chain reaction (RT-PCR) testing as a reference. To evaluate factors influencing test sensitivity, we performed 3 different analyses using multivariate mixed-effects meta-regression models. We included 194 studies with 221,878 Ag-RDTs performed. Overall, the pooled estimates of Ag-RDT sensitivity and specificity were 72.0% (95% confidence interval [CI] 69.8 to 74.2) and 98.9% (95% CI 98.6 to 99.1), respectively. When manufacturer instructions were followed, sensitivity increased to 76.4% (95%CI 73.8 to 78.8). Sensitivity was markedly better on samples with lower RT-PCR cycle threshold (Ct) values (sensitivity of 97.9% [95% CI 96.9 to 98.9] and 90.6% [95% CI 88.3 to 93.0] for Ct-values <20 and <25, compared to 54.4% [95% CI 47.3 to 61.5] and 18.7% [95% CI 13.9 to 23.4] for Ct-values ≥25 and ≥30) and was estimated to increase by 2.9 percentage points (95% CI 1.7 to 4.0) for every unit decrease in mean Ct-value when adjusting for testing procedure and patients symptom status. Concordantly, we found the mean Ct-value to be lower for true positive (22.2 [95% CI 21.5 to 22.8]) compared to false negative (30.4 [95% CI 29.7 to 31.1]) results. Testing in the first week from symptom onset resulted in substantially higher sensitivity (81.9% [95% CI 77.7 to 85.5]) compared to testing after 1 week (51.8%, 95% CI 41.5 to 61.9). Similarly, sensitivity was higher in symptomatic (76.2% [95% CI 73.3 to 78.9]) compared to asymptomatic (56.8% [95% CI 50.9 to 62.4]) persons. However, both effects were mainly driven by the Ct-value of the sample. With regards to sample type, highest sensitivity was found for nasopharyngeal (NP) and combined NP/oropharyngeal samples (70.8% [95% CI 68.3 to 73.2]), as well as in anterior nasal/mid-turbinate samples (77.3% [95% CI 73.0 to 81.0]). Conclusion Ag-RDTs detect most of the individuals infected with SARS-CoV-2, and almost all when high viral loads are present (>90%). With viral load, as estimated by Ct-value, being the most influential factor on their sensitivity, they are especially useful to detect persons with high viral load who are most likely to transmit the virus. To further quantify the effects of other factors influencing test sensitivity, standardization of clinical accuracy studies and access to patient level Ct-values and duration of symptoms are needed.

11.
J Infect ; 84(3): 355-360, 2022 03.
Article in English | MEDLINE | ID: covidwho-1560123

ABSTRACT

BACKGROUND: There are an abundance of commercially available lateral flow assays (LFAs) that detect antibodies to SARS-CoV-2. Whilst these are usually evaluated by the manufacturer, externally performed diagnostic accuracy studies to assess performance are essential. Herein we present an evaluation of 12 LFAs. METHODS: Sera from 100 SARS-CoV-2 reverse-transcriptase polymerase chain reaction (RT-PCR) positive participants were recruited through the FASTER study. A total of 105 pre-pandemic sera from participants with other infections were included as negative samples. RESULTS: At presentation sensitivity against RT-PCR ranged from 37.4 to 79% for IgM/IgG, 30.3-74% for IgG, and 21.2-67% for IgM. Sensitivity for IgM/IgG improved ≥ 21 days post symptom onset for 10/12 tests. Specificity ranged from 74.3 to 99.1% for IgM/IgG, 82.9-100% for IgG, and 75.2-98% for IgM. Compared to the EuroImmun IgG enzyme-linked immunosorbent assay (ELISA), sensitivity and specificity ranged from 44.6 to 95.4% and 85.4-100%, respectively. CONCLUSION: There are many LFAs available with varied sensitivity and specificity. Understanding the diagnostic accuracy of these tests will be vital as we come to rely more on the antibody status of a person moving forward, and as such manufacturer-independent evaluations are crucial.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Viral , COVID-19/diagnosis , Humans , Immunoassay , Immunoglobulin G , Immunoglobulin M , Sensitivity and Specificity
13.
Microbiol Spectr ; 9(2): e0025021, 2021 10 31.
Article in English | MEDLINE | ID: covidwho-1434908

ABSTRACT

During the last year, mass screening campaigns have been carried out to identify immunological response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and establish a possible seroprevalence. The obtained results gained new importance with the beginning of the SARS-CoV-2 vaccination campaign, as the lack of doses has persuaded several countries to introduce different policies for individuals who had a history of COVID-19. Lateral flow assays (LFAs) may represent an affordable tool to support population screening in low-middle-income countries, where diagnostic tests are lacking and epidemiology is still widely unknown. However, LFAs have demonstrated a wide range of performance, and the question of which one could be more valuable in these settings still remains. We evaluated the performance of 11 LFAs in detecting SARS-CoV-2 infection, analyzing samples collected from 350 subjects. In addition, samples from 57 health care workers collected at 21 to 24 days after the first dose of the Pfizer-BioNTech vaccine were also evaluated. LFAs demonstrated a wide range of specificity (92.31% to 100%) and sensitivity (50% to 100%). The analysis of postvaccination samples was used to describe the most suitable tests to detect IgG response against S protein receptor binding domain (RBD). Tuberculosis (TB) therapy was identified as a potential factor affecting the specificity of LFAs. This analysis identified which LFAs represent a valuable tool not only for the detection of prior SARS-CoV-2 infection but also for the detection of IgG elicited in response to vaccination. These results demonstrated that different LFAs may have different applications and the possible risks of their use in high-TB-burden settings. IMPORTANCE Our study provides a fresh perspective on the possible employment of SARS-CoV-2 LFA antibody tests. We developed an in-depth, large-scale analysis comparing LFA performance to enzyme-linked immunosorbent assay (ELISA) and electrochemiluminescence immunoassay (ECLIA) and evaluating their sensitivity and specificity in identifying COVID-19 patients at different time points from symptom onset. Moreover, for the first time, we analyzed samples of patients undergoing treatment for endemic poverty-related diseases, especially tuberculosis, and we evaluated the impact of this therapy on test specificity in order to assess possible performance in TB high-burden countries.


Subject(s)
Antibodies, Viral/blood , COVID-19 Serological Testing/methods , COVID-19 Vaccines/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Adult , COVID-19/diagnosis , Electrochemical Techniques , Enzyme-Linked Immunosorbent Assay , Female , Humans , Immunoassay/methods , Immunoglobulin G/blood , Immunoglobulin M/blood , Male , Mass Screening/methods , Point-of-Care Testing , Sensitivity and Specificity , Tuberculosis/diagnosis , Young Adult
14.
Sci Rep ; 11(1): 18313, 2021 09 15.
Article in English | MEDLINE | ID: covidwho-1412108

ABSTRACT

In the context of the coronavirus disease 2019 (COVID-19) pandemic there has been an increase of the use of antigen-detection rapid diagnostic tests (Ag-RDT). The performance of Ag-RDT vary greatly between manufacturers and evaluating their analytical limit of detection (LOD) has become high priority. Here we describe a manufacturer-independent evaluation of the LOD of 19 marketed Ag-RDT using live SARS-CoV-2 spiked in different matrices: direct culture supernatant, a dry swab, and a swab in Amies. Additionally, the LOD using dry swab was investigated after 7 days' storage at - 80 °C of the SARS-CoV-2 serial dilutions. An LOD of ≈ 5.0 × 102 pfu/ml (1.0 × 106 genome copies/ml) in culture media is defined as acceptable by the World Health Organization. Fourteen of 19 Ag-RDTs (ActiveXpress, Espline, Excalibur, Innova, Joysbio, Mologic, NowCheck, Orient, PanBio, RespiStrip, Roche, Standard-F, Standard-Q and Sure-Status) exceeded this performance criteria using direct culture supernatant applied to the Ag-RDT. Six Ag-RDT were not compatible with Amies media and a decreased sensitivity of 2 to 20-fold was observed for eleven tests on the stored dilutions at - 80 °C for 7 days. Here, we provide analytical sensitivity data to guide appropriate test and sample type selection for use and for future Ag-RDT evaluations.


Subject(s)
Antigens, Viral/immunology , COVID-19 Serological Testing/methods , COVID-19/diagnosis , SARS-CoV-2/immunology , Animals , Antibodies, Viral/analysis , Chlorocebus aethiops , Humans , Limit of Detection , Reagent Kits, Diagnostic , Specimen Handling , Vero Cells
16.
Med Microbiol Immunol ; 210(4): 181-186, 2021 Aug.
Article in English | MEDLINE | ID: covidwho-1384439

ABSTRACT

In 2020, the World Health Organization (WHO) recommended two SARS-CoV-2 lateral flow antigen-detecting rapid diagnostics tests (Ag-RDTs), both initially with nasopharyngeal (NP) sample collection. Independent head-to-head studies are necessary for SARS-CoV-2 Ag-RDT nasal sampling to demonstrate comparability of performance with nasopharyngeal (NP) sampling. We conducted a head-to-head comparison study of a supervised, self-collected nasal mid-turbinate (NMT) swab and a professional-collected NP swab, using the Panbio™ Ag-RDT (distributed by Abbott). We calculated positive and negative percent agreement between the sampling methods as well as sensitivity and specificity for both sampling techniques compared to the reference standard reverse transcription polymerase chain reaction (RT-PCR). A SARS-CoV-2 infection could be diagnosed by RT-PCR in 45 of 290 participants (15.5%). Comparing the NMT and NP sampling the positive percent agreement of the Ag-RDT was 88.1% (37/42 PCR positives detected; CI 75.0-94.8%). The negative percent agreement was 98.8% (245/248; CI 96.5-99.6%). The overall sensitivity of Panbio with NMT sampling was 84.4% (38/45; CI 71.2-92.3%) and 88.9% (40/45; CI 76.5-95.5%) with NP sampling. Specificity was 99.2% (243/245; CI 97.1-99.8%) for both, NP and NMT sampling. The sensitivity of the Panbio test in participants with high viral load (> 7 log10 SARS-CoV-2 RNA copies/mL) was 96.3% (CI 81.7-99.8%) for both, NMT and NP sampling. For the Panbio supervised NMT self-sampling yields comparable results to NP sampling. This suggests that nasal self-sampling could be used for to enable scaled-up population testing.Clinical Trial DRKS00021220.


Subject(s)
COVID-19 Testing/methods , COVID-19/diagnosis , SARS-CoV-2/isolation & purification , Specimen Handling/methods , Adult , Antigens, Viral , COVID-19/immunology , COVID-19 Nucleic Acid Testing , Female , Humans , Male , Middle Aged , Nasopharynx/virology , RNA, Viral , Sensitivity and Specificity , Viral Load , World Health Organization
17.
PLoS One ; 16(5): e0247918, 2021.
Article in English | MEDLINE | ID: covidwho-1388903

ABSTRACT

OBJECTIVES: Diagnostics are essential for controlling the pandemic. Identifying a reliable and fast diagnostic device is needed for effective testing. We assessed performance and ease-of-use of the Abbott PanBio antigen-detecting rapid diagnostic test (Ag-RDT). METHODS: This prospective, multi-centre diagnostic accuracy study enrolled at two sites in Germany. Following routine testing with reverse-transcriptase polymerase chain reaction (RT-PCR), a second study-exclusive swab was performed for Ag-RDT testing. Routine swabs were nasopharyngeal (NP) or combined NP/oropharyngeal (OP) whereas the study-exclusive swabs were NP. To evaluate performance, sensitivity and specificity were assessed overall and in predefined sub-analyses accordingly to cycle-threshold values, days after symptom onset, disease severity and study site. Additionally, an ease-of-use assessment (EoU) and System Usability Scale (SUS) were performed. RESULTS: 1108 participants were enrolled between Sept 28 and Oct 30, 2020. Of these, 106 (9.6%) were PCR-positive. The Abbott PanBio detected 92/106 PCR-positive participants with a sensitivity of 86.8% (95% CI: 79.0% - 92.0%) and a specificity of 99.9% (95% CI: 99.4%-100%). The sub-analyses indicated that sensitivity was 95.8% in Ct-values <25 and within the first seven days from symptom onset. The test was characterized as easy to use (SUS: 86/100) and considered suitable for point-of-care settings. CONCLUSION: The Abbott PanBio Ag-RDT performs well for SARS-CoV-2 testing in this large manufacturer independent study, confirming its WHO recommendation for Emergency Use in settings with limited resources.


Subject(s)
COVID-19 Serological Testing , COVID-19 , Point-of-Care Testing , SARS-CoV-2/immunology , Adult , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19/immunology , Female , Germany/epidemiology , Humans , Male , Middle Aged , Sensitivity and Specificity , World Health Organization
18.
Infect Dis (Lond) ; 53(12): 947-952, 2021.
Article in English | MEDLINE | ID: covidwho-1373618

ABSTRACT

INTRODUCTION: Most SARS-CoV-2 antigen-detecting rapid diagnostic tests require nasopharyngeal sampling, which is frequently perceived as uncomfortable and requires healthcare professionals, thus limiting scale-up. Nasal sampling could enable self-sampling and increase acceptability. The term nasal sampling is often not used uniformly and sampling protocols differ. METHODS: This manufacturer-independent, prospective diagnostic accuracy study, compared professional anterior nasal and nasal mid-turbinate sampling for a WHO-listed SARS-CoV-2 antigen-detecting rapid diagnostic test. The second group of participants collected a nasal mid-turbinate sample themselves and underwent a professional nasopharyngeal swab for comparison. The reference standard was real-time polymerase chain reaction (RT-PCR) using combined oro-/nasopharyngeal sampling. Individuals with high suspicion of SARS-CoV-2 infection were tested. Sensitivity, specificity, and percent agreement were calculated. Self-sampling was observed without intervention. Feasibility was evaluated by observer and participant questionnaires. RESULTS: Among 132 symptomatic adults, both professional anterior nasal and nasal mid-turbinate sampling yielded a sensitivity of 86.1% (31/36 RT-PCR positives detected; 95%CI: 71.3-93.9) and a specificity of 100.0% (95%CI: 95.7-100). The positive percent agreement was 100% (95%CI: 89.0-100). Among 96 additional adults, self nasal mid-turbinate and professional nasopharyngeal sampling yielded an identical sensitivity of 91.2% (31/34; 95%CI 77.0-97.0). Specificity was 98.4% (95%CI: 91.4-99.9) with nasal mid-turbinate and 100.0% (95%CI: 94.2-100) with nasopharyngeal sampling. The positive percent agreement was 96.8% (95%CI: 83.8-99.8). Most participants (85.3%) considered self-sampling as easy to perform. CONCLUSION: Professional anterior nasal and nasal mid-turbinate sampling are of equivalent accuracy for an antigen-detecting rapid diagnostic test in ambulatory symptomatic adults. Participants were able to reliably perform nasal mid-turbinate sampling themselves, following written and illustrated instructions. Nasal self-sampling will facilitate scaling of SARS-CoV-2 antigen testing.


Subject(s)
COVID-19 , SARS-CoV-2 , Adult , Humans , Prospective Studies , Sensitivity and Specificity , Turbinates
19.
PLoS Med ; 18(8): e1003735, 2021 08.
Article in English | MEDLINE | ID: covidwho-1354750

ABSTRACT

BACKGROUND: SARS-CoV-2 antigen rapid diagnostic tests (Ag-RDTs) are increasingly being integrated in testing strategies around the world. Studies of the Ag-RDTs have shown variable performance. In this systematic review and meta-analysis, we assessed the clinical accuracy (sensitivity and specificity) of commercially available Ag-RDTs. METHODS AND FINDINGS: We registered the review on PROSPERO (registration number: CRD42020225140). We systematically searched multiple databases (PubMed, Web of Science Core Collection, medRvix, bioRvix, and FIND) for publications evaluating the accuracy of Ag-RDTs for SARS-CoV-2 up until 30 April 2021. Descriptive analyses of all studies were performed, and when more than 4 studies were available, a random-effects meta-analysis was used to estimate pooled sensitivity and specificity in comparison to reverse transcription polymerase chain reaction (RT-PCR) testing. We assessed heterogeneity by subgroup analyses, and rated study quality and risk of bias using the QUADAS-2 assessment tool. From a total of 14,254 articles, we included 133 analytical and clinical studies resulting in 214 clinical accuracy datasets with 112,323 samples. Across all meta-analyzed samples, the pooled Ag-RDT sensitivity and specificity were 71.2% (95% CI 68.2% to 74.0%) and 98.9% (95% CI 98.6% to 99.1%), respectively. Sensitivity increased to 76.3% (95% CI 73.1% to 79.2%) if analysis was restricted to studies that followed the Ag-RDT manufacturers' instructions. LumiraDx showed the highest sensitivity, with 88.2% (95% CI 59.0% to 97.5%). Of instrument-free Ag-RDTs, Standard Q nasal performed best, with 80.2% sensitivity (95% CI 70.3% to 87.4%). Across all Ag-RDTs, sensitivity was markedly better on samples with lower RT-PCR cycle threshold (Ct) values, i.e., <20 (96.5%, 95% CI 92.6% to 98.4%) and <25 (95.8%, 95% CI 92.3% to 97.8%), in comparison to those with Ct ≥ 25 (50.7%, 95% CI 35.6% to 65.8%) and ≥30 (20.9%, 95% CI 12.5% to 32.8%). Testing in the first week from symptom onset resulted in substantially higher sensitivity (83.8%, 95% CI 76.3% to 89.2%) compared to testing after 1 week (61.5%, 95% CI 52.2% to 70.0%). The best Ag-RDT sensitivity was found with anterior nasal sampling (75.5%, 95% CI 70.4% to 79.9%), in comparison to other sample types (e.g., nasopharyngeal, 71.6%, 95% CI 68.1% to 74.9%), although CIs were overlapping. Concerns of bias were raised across all datasets, and financial support from the manufacturer was reported in 24.1% of datasets. Our analysis was limited by the included studies' heterogeneity in design and reporting. CONCLUSIONS: In this study we found that Ag-RDTs detect the vast majority of SARS-CoV-2-infected persons within the first week of symptom onset and those with high viral load. Thus, they can have high utility for diagnostic purposes in the early phase of disease, making them a valuable tool to fight the spread of SARS-CoV-2. Standardization in conduct and reporting of clinical accuracy studies would improve comparability and use of data.


Subject(s)
COVID-19 Serological Testing/methods , Age Factors , Antigens, Viral/analysis , COVID-19/diagnosis , COVID-19/etiology , COVID-19 Serological Testing/standards , Carrier State/diagnosis , Carrier State/virology , Humans , Nasopharynx/virology , Reagent Kits, Diagnostic , Reference Standards , SARS-CoV-2/immunology , Sensitivity and Specificity , Viral Load
20.
Infection ; 50(2): 395-406, 2022 Apr.
Article in English | MEDLINE | ID: covidwho-1353740

ABSTRACT

PURPOSE: Rapid antigen-detecting tests (Ag-RDTs) for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can transform pandemic control. Thus far, sensitivity (≤ 85%) of lateral-flow assays has limited scale-up. Conceivably, microfluidic immunofluorescence Ag-RDTs could increase sensitivity for SARS-CoV-2 detection. METHODS: This multi-centre diagnostic accuracy study investigated performance of the microfluidic immunofluorescence LumiraDx™ assay, enrolling symptomatic and asymptomatic participants with suspected SARS-CoV-2 infection. Participants collected a supervised nasal mid-turbinate (NMT) self-swab for Ag-RDT testing, in addition to a professionally collected nasopharyngeal (NP) swab for routine testing with reverse transcriptase polymerase chain reaction (RT-PCR). Results were compared to calculate sensitivity and specificity. Sub-analyses investigated the results by viral load, symptom presence and duration. An analytical study assessed exclusivity and limit-of-detection (LOD). In addition, we evaluated ease-of-use. RESULTS: The study was conducted between November 2nd 2020 and 4th of December 2020. 761 participants were enrolled, with 486 participants reporting symptoms on testing day. 120 out of 146 RT-PCR positive cases were detected positive by LumiraDx™, resulting in a sensitivity of 82.2% (95% CI 75.2-87.5%). Specificity was 99.3% (CI 98.3-99.7%). Sensitivity was increased in individuals with viral load ≥ 7 log10 SARS-CoV2 RNA copies/ml (93.8%; CI 86.2-97.3%). Testing against common respiratory commensals and pathogens showed no cross-reactivity and LOD was estimated to be 2-56 PFU/mL. The ease-of-use-assessment was favourable for lower throughput settings. CONCLUSION: The LumiraDx™ assay showed excellent analytical sensitivity, exclusivity and clinical specificity with good clinical sensitivity using supervised NMT self-sampling. TRIAL REGISTRATION NUMBER AND REGISTRATION DATE: DRKS00021220 and 01.04.2020.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnosis , Humans , Pandemics , Point-of-Care Systems , RNA, Viral , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL