Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Language
Year range
1.
EuropePMC; 2020.
Preprint in English | EuropePMC | ID: ppcovidwho-313801

ABSTRACT

The coronavirus disease 2019 (COVID-19) outbreak is an ongoing global health emergence, but the pathogenesis remains unclear. Here, we applied weighted gene co-expression network analysis to comprehensively characterize transcriptional changes in bronchial epithelium cells (NHBE and A549 cells) during SARS-CoV-2 infection. Our analysis identified a network highly correlated to COVID-19 pathogenicity based on MX1 , IFIT1 , ISG15 , IFI6 , DDX60 , IRF9 , PARP9 , PGLYRP4 , IL36G , SAA2 and IL-8 hub genes. The results also indicated a unique transcriptional signatures of infected cells including IFI6 and IRF9 as novel gene candidates and suggested their prospective mechanism in COVID-19 pathogenesis. The result of hub genes enrichment showed that the most correlation topic in biological process and KEGG were type I interferon signaling pathway, IL-17 signaling pathway, cytokine mediated signaling pathway, and defense response to virus categories which all play significant roles in restricting viral infection. Also according to the drug-target network, we recognized 54 FDA-approved drug candidates for other indications could potentially use for the treatment of COVID-19 patients through regulation of six hub genes of the co-expression network. Our findings also showed that the 19 experimentally validated miRNAs regulated the co-expression network through 5 hub genes ( SLC19A3 , FAM13A , PLA2G16 , and HRASLS5 ). In conclusion, these hub genes had potential roles in the translational medicine and might become promising therapeutic targets further in vitro and in vivo experimental studies are needed to evaluate the role of above mentioned genes in COVID-19.

2.
J Clin Med ; 10(16)2021 Aug 13.
Article in English | MEDLINE | ID: covidwho-1355000

ABSTRACT

The coronavirus disease-2019 (COVID-19) pandemic has caused an enormous loss of lives. Various clinical trials of vaccines and drugs are being conducted worldwide; nevertheless, as of today, no effective drug exists for COVID-19. The identification of key genes and pathways in this disease may lead to finding potential drug targets and biomarkers. Here, we applied weighted gene co-expression network analysis and LIME as an explainable artificial intelligence algorithm to comprehensively characterize transcriptional changes in bronchial epithelium cells (primary human lung epithelium (NHBE) and transformed lung alveolar (A549) cells) during severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Our study detected a network that significantly correlated to the pathogenicity of COVID-19 infection based on identified hub genes in each cell line separately. The novel hub gene signature that was detected in our study, including PGLYRP4 and HEPHL1, may shed light on the pathogenesis of COVID-19, holding promise for future prognostic and therapeutic approaches. The enrichment analysis of hub genes showed that the most relevant biological process and KEGG pathways were the type I interferon signaling pathway, IL-17 signaling pathway, cytokine-mediated signaling pathway, and defense response to virus categories, all of which play significant roles in restricting viral infection. Moreover, according to the drug-target network, we identified 17 novel FDA-approved candidate drugs, which could potentially be used to treat COVID-19 patients through the regulation of four hub genes of the co-expression network. In conclusion, the aforementioned hub genes might play potential roles in translational medicine and might become promising therapeutic targets. Further in vitro and in vivo experimental studies are needed to evaluate the role of these hub genes in COVID-19.

3.
Front Oncol ; 10: 572329, 2020.
Article in English | MEDLINE | ID: covidwho-1264350

ABSTRACT

The recent outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) or coronavirus disease 2019 (COVID-19) in China, which spread to the rest of the world, led the World Health Organization to classify it as a global pandemic. COVID-19 belongs to the Bettacoronavirus genus of the Coronaviridae family, and it mainly spreads through the respiratory tract. Studies have now confirmed a human-to-human transmission as the primary pathway of spread. COVID-19 patients with a history of diseases such as respiratory system diseases, immune deficiency, diabetes, cardiovascular disease, and cancer are prone to adverse events (admission to the intensive care unit requiring invasive ventilation or even death). The current focus has been on the development of novel therapeutics, including antivirals, monoclonal antibodies, and vaccines. However, although there is undoubtedly an urgent need to identify effective treatment options against infection with COVID-19, it is equally important to clarify management protocols for the other significant diseases from which these patients may suffer, including cancer. This review summarizes the current evidence regarding the epidemiology, pathogenesis, and management of patients with COVID-19. It also aims to provide the reader with insights into COVID-19 in pregnant patients and those with cancer, outlining necessary precautions relevant to cancer patients. Finally, we provide the available evidence on the latest potent antiviral drugs and vaccines of COVID-19 and the ongoing drug trials.

SELECTION OF CITATIONS
SEARCH DETAIL