Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
1.
Commun Biol ; 5(1): 516, 2022 05 30.
Article in English | MEDLINE | ID: covidwho-1947507

ABSTRACT

The development of an in vitro cell model that can be used to study severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) research is expected. Here we conducted infection experiments in bronchial organoids (BO) and an BO-derived air-liquid interface model (BO-ALI) using 8 SARS-CoV-2 variants. The infection efficiency in BO-ALI was more than 1,000 times higher than that in BO. Among the bronchial epithelial cells, we found that ciliated cells were infected with the virus, but basal cells were not. Ciliated cells died 7 days after the viral infection, but basal cells survived after the viral infection and differentiated into ciliated cells. Fibroblast growth factor 10 signaling was essential for this differentiation. These results indicate that BO and BO-ALI may be used not only to evaluate the cell response to SARS-CoV-2 and coronavirus disease 2019 (COVID-19) therapeutic agents, but also for airway regeneration studies.


Subject(s)
COVID-19 , SARS-CoV-2 , Bronchi , Humans , Organoids
2.
J Oral Maxillofac Surg Med Pathol ; 2022 Apr 15.
Article in English | MEDLINE | ID: covidwho-1920647

ABSTRACT

Objective: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the pathogen causing the coronavirus disease 2019 (COVID-19) global pandemic. Recent studies have shown the importance of the throat and salivary glands as sites of virus replication and transmission. The viral host receptor, angiotensin-converting enzyme 2 (ACE2), is broadly enriched in epithelial cells of the salivary glands and oral mucosae. Oral care products containing cetylpyridinium chloride (CPC) as a bactericidal ingredient are known to exhibit antiviral activity against SARS-CoV-2 in vitro. However, the exact mechanism of action remains unknown. Methods: This study examined the antiviral activity of CPC against SARS-CoV-2 and its inhibitory effect on the interaction between the viral spike (S) protein and ACE2 using an enzyme-linked immunosorbent assay. Results: CPC (0.05%, 0.1% and 0.3%) effectively inactivated SARS-CoV-2 within the contact times (20 and 60 s) in directions for use of oral care products in vitro. The binding ability of both the S protein and ACE2 were reduced by CPC. Conclusions: Our results suggest that CPC inhibits the interaction between S protein and ACE2, and thus, reduces infectivity of SARS-CoV-2 and suppresses viral adsorption.

3.
EuropePMC; 2022.
Preprint in English | EuropePMC | ID: ppcovidwho-337677

ABSTRACT

After the global spread of SARS-CoV-2 Omicron BA.2 lineage, some BA.2-related variants that acquire mutations in the L452 residue of spike protein, such as BA.2.9.1 and BA.2.13 (L452M), BA.2.12.1 (L452Q), and BA.2.11, BA.4 and BA.5 (L452R), emerged in multiple countries. Our statistical analysis showed that the effective reproduction numbers of these L452R/M/Q-bearing BA.2-related Omicron variants are greater than that of the original BA.2. Neutralization experiments revealed that the immunity induced by BA.1 and BA.2 infections is less effective against BA.4/5. Cell culture experiments showed that BA.2.12.1 and BA.4/5 replicate more efficiently in human alveolar epithelial cells than BA.2, and particularly, BA.4/5 is more fusogenic than BA.2. Furthermore, infection experiments using hamsters indicated that BA.4/5 is more pathogenic than BA.2. Altogether, our multiscale investigations suggest that the risk of L452R/M/Q-bearing BA.2-related Omicron variants, particularly BA.4 and BA.5, to global health is potentially greater than that of original BA.2. Highlights Spike L452R/Q/M mutations increase the effective reproduction number of BA.2 BA.4/5 is resistant to the immunity induced by BA.1 and BA.2 infections BA.2.12.1 and BA.4/5 more efficiently spread in human lung cells than BA.2 BA.4/5 is more pathogenic than BA.2 in hamsters

4.
Antiviral Res ; 199: 105268, 2022 03.
Article in English | MEDLINE | ID: covidwho-1850634

ABSTRACT

Experiments with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are limited by the need for biosafety level 3 (BSL3) conditions. A SARS-CoV-2 replicon system rather than an in vitro infection system is suitable for antiviral screening since it can be handled under BSL2 conditions and does not produce infectious particles. However, the reported replicon systems are cumbersome because of the need for transient transfection in each assay. In this study, we constructed a bacterial artificial chromosome vector (the replicon-BAC vector) including the SARS-CoV-2 replicon and a fusion gene encoding Renilla luciferase and neomycin phosphotransferase II, examined the antiviral effects of several known compounds, and then established a cell line stably harboring the replicon-BAC vector. Several cell lines transiently transfected with the replicon-BAC vector produced subgenomic replicon RNAs (sgRNAs) and viral proteins, and exhibited luciferase activity. In the transient replicon system, treatment with remdesivir or interferon-ß but not with camostat or favipiravir suppressed the production of viral agents and luciferase, indicating that luciferase activity corresponds to viral replication. VeroE6/Rep3, a stable replicon cell line based on VeroE6 cells, was successfully established and continuously produced viral proteins, sgRNAs and luciferase, and their production was suppressed by treatment with remdesivir or interferon-ß. Molnupiravir, a novel coronavirus RdRp inhibitor, inhibited viral replication more potently in VeroE6/Rep3 cells than in VeroE6-based transient replicon cells. In summary, our stable replicon system will be a powerful tool for the identification of SARS-CoV-2 antivirals through high-throughput screening.


Subject(s)
COVID-19 , SARS-CoV-2 , Antiviral Agents/pharmacology , High-Throughput Screening Assays , Humans , Replicon , SARS-CoV-2/genetics , Virus Replication
5.
Cell ; 185(12): 2103-2115.e19, 2022 06 09.
Article in English | MEDLINE | ID: covidwho-1814233

ABSTRACT

Soon after the emergence and global spread of the SARS-CoV-2 Omicron lineage BA.1, another Omicron lineage, BA.2, began outcompeting BA.1. The results of statistical analysis showed that the effective reproduction number of BA.2 is 1.4-fold higher than that of BA.1. Neutralization experiments revealed that immunity induced by COVID vaccines widely administered to human populations is not effective against BA.2, similar to BA.1, and that the antigenicity of BA.2 is notably different from that of BA.1. Cell culture experiments showed that the BA.2 spike confers higher replication efficacy in human nasal epithelial cells and is more efficient in mediating syncytia formation than the BA.1 spike. Furthermore, infection experiments using hamsters indicated that the BA.2 spike-bearing virus is more pathogenic than the BA.1 spike-bearing virus. Altogether, the results of our multiscale investigations suggest that the risk of BA.2 to global health is potentially higher than that of BA.1.


Subject(s)
COVID-19 , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Animals , COVID-19/virology , Cricetinae , Epithelial Cells , Humans , SARS-CoV-2/genetics , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/genetics
6.
Biochem Biophys Res Commun ; 615: 56-62, 2022 07 30.
Article in English | MEDLINE | ID: covidwho-1797135

ABSTRACT

With the current worldwide pandemic of COVID-19, there is an urgent need to develop effective treatment and prevention methods against SARS-CoV-2 infection. We have previously reported that the proanthocyanidin (PAC) fraction in blueberry (BB) leaves has strong antiviral activity against hepatitis C virus (HCV) and human T-lymphocytic leukemia virus type 1 (HTLV-1). In this study, we used Kunisato 35 Gou (K35) derived from the rabbit eye blueberry (Vaccinium virgatum Aiton), which has a high PAC content in the leaves and stems. The mean of polymerization (mDP) of PAC in K35 was the highest of 7.88 in Fraction 8 (Fr8) from the stems and 12.28 of Fraction 7 (Fr7) in the leaves. The composition of BB-PAC in K35 is that most are B-type bonds with a small number of A-type bonds and cinchonain I as extension units. A strong antiviral effect was observed in Fr7, with a high polymerized PAC content in both the leaves and stems. Furthermore, when we examined the difference in the action of BB-PAC before and after SARS-CoV-2 infection, we found a stronger inhibitory effect in the pre-infection period. Moreover, BB-PAC Fr7 inhibited the activity of angiotensin II converting enzyme (ACE2), although no effect was observed in a neutralization test of pseudotyped SARS-CoV-2. The viral chymotrypsin-like cysteine protease (3CLpro) of SARS-CoV-2 was also inhibited by BB-PAC Fr7 in leaves and stems. These results indicate that BB-PAC has at least two different inhibitory effects, and that it is effective in suppressing SARS-CoV-2 infection regardless of the time of infection.


Subject(s)
Blueberry Plants , COVID-19 , Proanthocyanidins , Angiotensin-Converting Enzyme 2 , Animals , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Blueberry Plants/chemistry , COVID-19/drug therapy , Plant Leaves , Polymerization , Proanthocyanidins/pharmacology , Rabbits , SARS-CoV-2
7.
EuropePMC; 2022.
Preprint in English | EuropePMC | ID: ppcovidwho-332336

ABSTRACT

Recent studies have revealed the unique virological characteristics of Omicron, the newest SARS-CoV-2 variant of concern, such as pronounced resistance to vaccine-induced neutralizing antibodies, less efficient cleavage of the spike protein, and poor fusogenicity. However, it remains unclear which mutation(s) in the spike protein determine the virological characteristics of Omicron. Here, we show that the representative characteristics of the Omicron spike are determined by its receptor-binding domain. Interestingly, the molecular phylogenetic analysis revealed that the acquisition of the spike S375F mutation was closely associated with the explosive spread of Omicron in the human population. We further elucidate that the F375 residue forms an interprotomer pi-pi interaction with the H505 residue in another protomer in the spike trimer, which confers the attenuated spike cleavage efficiency and fusogenicity of Omicron. Our data shed light on the evolutionary events underlying Omicron emergence at the molecular level. Highlights Omicron spike receptor binding domain determines virological characteristics Spike S375F mutation results in the poor spike cleavage and fusogenicity in Omicron Acquisition of the spike S375F mutation triggered the explosive spread of Omicron F375-H505-mediated π-π interaction in the spike determines the phenotype of Omicron

8.
Nature ; 603(7902): 706-714, 2022 03.
Article in English | MEDLINE | ID: covidwho-1764186

ABSTRACT

The SARS-CoV-2 Omicron BA.1 variant emerged in 20211 and has multiple mutations in its spike protein2. Here we show that the spike protein of Omicron has a higher affinity for ACE2 compared with Delta, and a marked change in its antigenicity increases Omicron's evasion of therapeutic monoclonal and vaccine-elicited polyclonal neutralizing antibodies after two doses. mRNA vaccination as a third vaccine dose rescues and broadens neutralization. Importantly, the antiviral drugs remdesivir and molnupiravir retain efficacy against Omicron BA.1. Replication was similar for Omicron and Delta virus isolates in human nasal epithelial cultures. However, in lung cells and gut cells, Omicron demonstrated lower replication. Omicron spike protein was less efficiently cleaved compared with Delta. The differences in replication were mapped to the entry efficiency of the virus on the basis of spike-pseudotyped virus assays. The defect in entry of Omicron pseudotyped virus to specific cell types effectively correlated with higher cellular RNA expression of TMPRSS2, and deletion of TMPRSS2 affected Delta entry to a greater extent than Omicron. Furthermore, drug inhibitors targeting specific entry pathways3 demonstrated that the Omicron spike inefficiently uses the cellular protease TMPRSS2, which promotes cell entry through plasma membrane fusion, with greater dependency on cell entry through the endocytic pathway. Consistent with suboptimal S1/S2 cleavage and inability to use TMPRSS2, syncytium formation by the Omicron spike was substantially impaired compared with the Delta spike. The less efficient spike cleavage of Omicron at S1/S2 is associated with a shift in cellular tropism away from TMPRSS2-expressing cells, with implications for altered pathogenesis.


Subject(s)
COVID-19/pathology , COVID-19/virology , Membrane Fusion , SARS-CoV-2/metabolism , SARS-CoV-2/pathogenicity , Serine Endopeptidases/metabolism , Virus Internalization , Adult , Aged , Aged, 80 and over , Angiotensin-Converting Enzyme 2/metabolism , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/immunology , COVID-19 Vaccines/immunology , Cell Line , Cell Membrane/metabolism , Cell Membrane/virology , Chlorocebus aethiops , Convalescence , Female , Humans , Immune Sera/immunology , Intestines/pathology , Intestines/virology , Lung/pathology , Lung/virology , Male , Middle Aged , Mutation , Nasal Mucosa/pathology , Nasal Mucosa/virology , SARS-CoV-2/drug effects , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Tissue Culture Techniques , Virulence , Virus Replication
9.
Nihon Yakurigaku Zasshi ; 157(2): 134-138, 2022.
Article in Japanese | MEDLINE | ID: covidwho-1714692

ABSTRACT

RNA viruses are responsible for several infectious diseases, including dengue fever, Zika fever, and COVID-19. Reverse genetics is a powerful tool to elucidate which domain or mutations in RNA viruses determine their pathogenicity and ability to evade antiviral drugs and host immune response. Previous reverse genetics systems for flaviviruses and coronaviruses have been technically challenging and time-consuming, thereby hampering the further understanding of events during viral evolution. A novel reverse genetics system-circular polymerase extension reaction (CPER)-has been developed to overcome this limitation. CPER is based on PCR-mediated assembly of DNA fragments that encode the whole genome of these viruses. CPER requires a relatively short time to introduce specific mutations into the viral genome of flaviviruses and SARS-CoV-2. In this review article, we explain the mode of action of this system and discuss the future direction of reverse genetics for RNA viruses.


Subject(s)
COVID-19 , Zika Virus Infection , Zika Virus , Genome, Viral , Humans , RNA, Viral/genetics , Reverse Genetics , SARS-CoV-2 , Zika Virus/genetics , Zika Virus Infection/genetics
10.
EuropePMC;
Preprint in English | EuropePMC | ID: ppcovidwho-327671

ABSTRACT

Soon after the emergence and global spread of a new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron lineage, BA.1 (ref 1, 2 ), another Omicron lineage, BA.2, has initiated outcompeting BA.1. Statistical analysis shows that the effective reproduction number of BA.2 is 1.4-fold higher than that of BA.1. Neutralisation experiments show that the vaccine-induced humoral immunity fails to function against BA.2 like BA.1, and notably, the antigenicity of BA.2 is different from BA.1. Cell culture experiments show that BA.2 is more replicative in human nasal epithelial cells and more fusogenic than BA.1. Furthermore, infection experiments using hamsters show that BA.2 is more pathogenic than BA.1. Our multiscale investigations suggest that the risk of BA.2 for global health is potentially higher than that of BA.1.

11.
EuropePMC;
Preprint in English | EuropePMC | ID: ppcovidwho-327198

ABSTRACT

Objective: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the pathogen causing the coronavirus disease 2019 (COVID-19) global pandemic. Recent studies have shown the importance of the throat and salivary glands as sites of virus replication and transmission. The viral host receptor, angiotensin-converting enzyme 2 (ACE2), is broadly enriched in epithelial cells of the salivary glands and oral mucosae. Oral care products containing cetylpyridinium chloride (CPC) as a bactericidal ingredient are known to exhibit antiviral activity against SARS-CoV-2 in vitro . However, the exact mechanism of action remains unknown. Methods: This study examined the antiviral activity of CPC against SARS-CoV-2 and its inhibitory effect on the interaction between the viral spike (S) protein and ACE2 using an enzyme-linked immunosorbent assay. Results: CPC (0.05%, 0.1% and 0.3%) effectively inactivated SARS-CoV-2 within the contact times (20 and 60 s) in directions for use of oral care products in vitro . The binding ability of both the S protein and ACE2 were reduced by CPC. Conclusions: Our results suggest that CPC inhibits the interaction between S protein and ACE2, and thus, reduces infectivity of SARS-CoV-2 and suppresses viral adsorption.

12.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-317457

ABSTRACT

Many variants that naturally acquire multiple mutations have emerged during the current SARS-CoV-2 pandemic, which is devastating societies worldwide. Emerging mutations can affect viral properties such as infectivity and immune resistance. Although the sensitivity of naturally occurring SARS-CoV-2 variants to humoral immunity has recently been investigated, sensitivity to human leukocyte antigen (HLA)-restricted cellular immunity remains unaddressed. Here, we demonstrate that two recently emerging mutations in the receptor - binding domain of the SARS-CoV-2 spike protein, L452R (in B.1.427/429) and Y453F (in B.1.298), confer escape from HLA-A24-restricted cellular immunity. These mutations reinforce the affinity toward the viral receptor ACE2;notably, the L452R mutation increases spike stability and viral infectivity and potentially promotes viral replication. Our data suggest that HLA-restricted cellular immunity potentially affects the evolution of viral phenotypes and that a further threat of the SARS-CoV-2 pandemic is escape from cellular immunity.Funding: This study was supported in part by AMED Research Program on Emerging and Re-emerging Infectious Diseases 20fk0108163 (to A.S.), 20fk0108146 (to K.S.), 19fk0108171 (to S.N. and K.S.), 20fk0108270 (to K.S.) and 20fk0108413 (to T.I., S.N. and K.S.);AMED Research Program on HIV/AIDS 20fk0410019 (to T.U. and K.S.), 20fk0410014 (to K.S.) and 21fk0410039 (to K.S.);AMED Japan Program for Infectious Diseases Research and Infrastructure 20wm0325009 (to A.S.);JST J RAPID JPMJJR2007 (to K.S.);JST SICORP (e-ASIA) JPMJSC20U1 (to K.S.);JSTCREST JPMJCR20H6 (to S.N) and JPMJCR20H4 (to K.S);JSPS KAKENHI Grant-in-Aid for Scientific Research B 18H02662 (to K.S.) and 21H02737 (to K.S.);JSPS KAKENHI Grant-in-Aid for Scientific Research on Innovative Areas 16H06429 (to S.N. and K.S.), 16K21723 (to S.N. and K.S.), 17H05823 (to S.N.), 17H05813 (to K.S.), 19H04843 (to S.N.) and 19H04826 (to K.S.);JSPS Fund for the Promotion of Joint International Research (Fostering Joint International Research) 18KK0447 (to K.S.);JSPS Core-to-Core Program JPJSCCB20190009 (to T.U.) andJPJSCCA20190008 (A. Advanced Research Networks) (to K.S.);JSPS Research Fellow DC1 19J20488 (to I.K.);JSPS Leading Initiative for Excellent Young Researchers (LEADER) (to T.I.);ONO Medical Research Foundation (to K.S.);Ichiro Kanehara Foundation (to K.S.);Lotte Foundation (to K.S.);Mochida Memorial Foundation for Medical and Pharmaceutical Research (to K.S.);Daiichi Sankyo Foundation of Life Science (to K.S.);Sumitomo Foundation (to K.S.);Uehara Foundation (to K.S.);Takeda Science Foundation (to C.M., T.I. and K.S.);The Tokyo Biochemical Research Foundation (to K.S.);Mitsubishi Foundation (to T.I.);Shin Nihon Foundation of Advanced Medical Research (to T.I.);An intramural grant from Kumamoto University COVID-19 Research Projects (AMABIE) (to C.M., T.I. and T.U.);Kumamoto University International Collaborative Research Grants (to T.U.);Intercontinental Research and Educational Platform Aiming for Eradication of HIV/AIDS (to T.I. and T.U.);2020 Tokai University School of Medicine Research Aid (to S.N.);and Joint Usage/Research Center program of Institute for Frontier Life and Medical Sciences, Kyoto University (to K.S.). T.S.T and I.N. are the recipients of the doctoral course scholarship from Japanese Government.Conflict of Interest: The authors declare that no competing interests exist.Ethical Approval: All protocols involving human subjects recruited at Kyushu University Hospital, Japan, National Hospital Organization Kyushu Medical Center, Japan, and Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Japan, were reviewed and approved by the Ethics Committee for Epidemiological andGeneral Research at the Faculty of Life Science, Kumamoto University (approval numbers 2066 and 461). All human subjects provided written informed consent.

13.
Cell Rep ; 38(2): 110218, 2022 01 11.
Article in English | MEDLINE | ID: covidwho-1588140

ABSTRACT

SARS-CoV-2 Lambda, a variant of interest, has spread in some South American countries; however, its virological features and evolutionary traits remain unclear. In this study, we use pseudoviruses and reveal that the spike protein of the Lambda variant is more infectious than that of other variants due to the T76I and L452Q mutations. The RSYLTPGD246-253N mutation, a unique 7-amino acid deletion in the N-terminal domain of the Lambda spike protein, is responsible for evasion from neutralizing antibodies and further augments antibody-mediated enhancement of infection. Although this mutation generates a nascent N-linked glycosylation site, the additional N-linked glycan is dispensable for the virological property conferred by this mutation. Since the Lambda variant has dominantly spread according to the increasing frequency of the isolates harboring the RSYLTPGD246-253N mutation, our data suggest that the RSYLTPGD246-253N mutation is closely associated with the substantial spread of the Lambda variant in South America.


Subject(s)
COVID-19/immunology , Immunity/immunology , SARS-CoV-2/immunology , Adult , Aged , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Cell Line , Female , Glycosylation , HEK293 Cells , Humans , Male , Middle Aged , Mutation/immunology , Spike Glycoprotein, Coronavirus/immunology
14.
Nature ; 602(7896): 300-306, 2022 02.
Article in English | MEDLINE | ID: covidwho-1532072

ABSTRACT

During the current coronavirus disease 2019 (COVID-19) pandemic, a variety of mutations have accumulated in the viral genome of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and, at the time of writing, four variants of concern are considered to be potentially hazardous to human society1. The recently emerged B.1.617.2/Delta variant of concern is closely associated with the COVID-19 surge that occurred in India in the spring of 2021 (ref. 2). However, the virological properties of B.1.617.2/Delta remain unclear. Here we show that the B.1.617.2/Delta variant is highly fusogenic and notably more pathogenic than prototypic SARS-CoV-2 in infected hamsters. The P681R mutation in the spike protein, which is highly conserved in this lineage, facilitates cleavage of the spike protein and enhances viral fusogenicity. Moreover, we demonstrate that the P681R-bearing virus exhibits higher pathogenicity compared with its parental virus. Our data suggest that the P681R mutation is a hallmark of the virological phenotype of the B.1.617.2/Delta variant and is associated with enhanced pathogenicity.


Subject(s)
COVID-19/virology , Membrane Fusion , Mutation , SARS-CoV-2/genetics , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/genetics , Amino Acid Substitution , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/epidemiology , Cricetinae , Giant Cells/metabolism , Giant Cells/virology , Male , Mesocricetus , Phylogeny , SARS-CoV-2/immunology , SARS-CoV-2/metabolism , Virulence/genetics , Virus Replication
15.
J Infect Dis ; 224(6): 989-994, 2021 09 17.
Article in English | MEDLINE | ID: covidwho-1429251

ABSTRACT

The SARS-CoV-2 B.1.617 variant emerged in the Indian state of Maharashtra in late 2020. There have been fears that 2 key mutations seen in the receptor-binding domain, L452R and E484Q, would have additive effects on evasion of neutralizing antibodies. We report that spike bearing L452R and E484Q confers modestly reduced sensitivity to BNT162b2 mRNA vaccine-elicited antibodies following either first or second dose. The effect is similar in magnitude to the loss of sensitivity conferred by L452R or E484Q alone. These data demonstrate reduced sensitivity to vaccine-elicited neutralizing antibodies by L452R and E484Q but lack of synergistic loss of sensitivity.


Subject(s)
COVID-19/immunology , COVID-19/virology , Immune Evasion , Mutation , SARS-CoV-2/genetics , Angiotensin-Converting Enzyme 2 , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , COVID-19 Vaccines/immunology , Chlorocebus aethiops , HEK293 Cells , Humans , India , Protein Binding , SARS-CoV-2/immunology , Serine Endopeptidases , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Vero Cells
16.
Biochem Biophys Res Commun ; 570: 21-25, 2021 09 17.
Article in English | MEDLINE | ID: covidwho-1309162

ABSTRACT

Natto, a traditional Japanese fermented soybean food, is well known to be nutritious and beneficial for health. In this study, we examined whether natto impairs infection by viruses, such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) as well as bovine herpesvirus 1 (BHV-1). Interestingly, our results show that both SARS-CoV-2 and BHV-1 treated with a natto extract were fully inhibited infection to the cells. We also found that the glycoprotein D of BHV-1 was shown to be degraded by Western blot analysis and that a recombinant SARS-CoV-2 receptor-binding domain (RBD) was proteolytically degraded when incubated with the natto extract. In addition, RBD protein carrying a point mutation (UK variant N501Y) was also degraded by the natto extract. When the natto extract was heated at 100 °C for 10 min, the ability of both SARS-CoV-2 and BHV-1 to infect to the cells was restored. Consistent with the results of the heat inactivation, a serine protease inhibitor inhibited anti-BHV-1 activity caused by the natto extract. Thus, our findings provide the first evidence that the natto extract contains a protease(s) that inhibits viral infection through the proteolysis of the viral proteins.


Subject(s)
COVID-19/drug therapy , Plant Extracts/pharmacology , SARS-CoV-2/drug effects , Soy Foods , Soybeans/chemistry , Animals , COVID-19/metabolism , COVID-19/pathology , COVID-19/virology , Cattle , Cells, Cultured , Chlorocebus aethiops , Herpesviridae Infections/drug therapy , Herpesviridae Infections/metabolism , Herpesviridae Infections/pathology , Herpesviridae Infections/virology , Herpesvirus 1, Bovine/drug effects , Herpesvirus 1, Bovine/isolation & purification , Herpesvirus 1, Bovine/pathogenicity , Humans , Plant Extracts/chemistry , SARS-CoV-2/isolation & purification , SARS-CoV-2/pathogenicity , Viral Proteins/antagonists & inhibitors , Viral Proteins/metabolism
17.
Cell Host Microbe ; 29(7): 1124-1136.e11, 2021 07 14.
Article in English | MEDLINE | ID: covidwho-1272337

ABSTRACT

Many SARS-CoV-2 variants with naturally acquired mutations have emerged. These mutations can affect viral properties such as infectivity and immune resistance. Although the sensitivity of naturally occurring SARS-CoV-2 variants to humoral immunity has been investigated, sensitivity to human leukocyte antigen (HLA)-restricted cellular immunity remains largely unexplored. Here, we demonstrate that two recently emerging mutations in the receptor-binding domain of the SARS-CoV-2 spike protein, L452R (in B.1.427/429 and B.1.617) and Y453F (in B.1.1.298), confer escape from HLA-A24-restricted cellular immunity. These mutations reinforce affinity toward the host entry receptor ACE2. Notably, the L452R mutation increases spike stability, viral infectivity, viral fusogenicity, and thereby promotes viral replication. These data suggest that HLA-restricted cellular immunity potentially affects the evolution of viral phenotypes and that a further threat of the SARS-CoV-2 pandemic is escape from cellular immunity.


Subject(s)
COVID-19/virology , Immunity, Cellular , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Angiotensin-Converting Enzyme 2 , COVID-19/epidemiology , Genome, Viral , Humans , Mutation , Phylogeny , Protein Binding , Viral Proteins/genetics , Virus Replication
18.
Pathogens ; 10(6)2021 Jun 15.
Article in English | MEDLINE | ID: covidwho-1270099

ABSTRACT

More than 1 year has passed since social activities have been restricted due to the spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). More recently, novel SARS-CoV-2 variants have been spreading around the world, and there is growing concern that they may have higher transmissibility and that the protective efficacy of vaccines may be weaker against them. Immediate measures are needed to reduce human exposure to the virus. In this study, the antiviral efficacy of deep-ultraviolet light-emitting diode (DUV-LED) irradiation (280 ± 5 nm, 3.75 mW/cm2) against three SARS-CoV-2 variants was evaluated. For the B.1.1.7, B.1.351, and P.1 variant strains, irradiation of the virus stocks for 1 s resulted in infectious titer reduction rates of 96.3%, 94.6%, and 91.9%, respectively, and with irradiation for 5 s, the rates increased to 99.9%, 99.9%, and 99.8%, respectively. We also tested the effect of pulsed DUV-LED irradiation (7.5 mW/cm2, duty rate: 50%, frequency: 1 kHz) under the same output conditions as for continuous irradiation and found that the antiviral efficacy of pulsed and continuous irradiation was the same. These findings suggest that by further developing and optimizing the DUV-LED device to increase its output, it may be possible to instantly inactivate SARS-CoV-2 with DUV-LED irradiation.

20.
Emerg Microbes Infect ; 9(1): 1744-1747, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-653863

ABSTRACT

The spread of novel coronavirus disease 2019 (COVID-19) infections worldwide has raised concerns about the prevention and control of SARS-CoV-2. Devices that rapidly inactivate viruses can reduce the chance of infection through aerosols and contact transmission. This in vitro study demonstrated that irradiation with a deep ultraviolet light-emitting diode (DUV-LED) of 280 ± 5 nm wavelength rapidly inactivates SARS-CoV-2 obtained from a COVID-19 patient. Development of devices equipped with DUV-LED is expected to prevent virus invasion through the air and after touching contaminated objects.


Subject(s)
Betacoronavirus/radiation effects , Coronavirus Infections/virology , Pneumonia, Viral/virology , Animals , Betacoronavirus/isolation & purification , COVID-19 , Cell Survival , Chlorocebus aethiops , Decontamination , Humans , Pandemics , SARS-CoV-2 , Ultraviolet Rays , Vero Cells , Virus Inactivation
SELECTION OF CITATIONS
SEARCH DETAIL