Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Commun Biol ; 5(1): 516, 2022 05 30.
Article in English | MEDLINE | ID: covidwho-1947507

ABSTRACT

The development of an in vitro cell model that can be used to study severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) research is expected. Here we conducted infection experiments in bronchial organoids (BO) and an BO-derived air-liquid interface model (BO-ALI) using 8 SARS-CoV-2 variants. The infection efficiency in BO-ALI was more than 1,000 times higher than that in BO. Among the bronchial epithelial cells, we found that ciliated cells were infected with the virus, but basal cells were not. Ciliated cells died 7 days after the viral infection, but basal cells survived after the viral infection and differentiated into ciliated cells. Fibroblast growth factor 10 signaling was essential for this differentiation. These results indicate that BO and BO-ALI may be used not only to evaluate the cell response to SARS-CoV-2 and coronavirus disease 2019 (COVID-19) therapeutic agents, but also for airway regeneration studies.


Subject(s)
COVID-19 , SARS-CoV-2 , Bronchi , Humans , Organoids
2.
Vaccine ; 40(31): 4231-4241, 2022 Jul 29.
Article in English | MEDLINE | ID: covidwho-1882604

ABSTRACT

The vaccine S-268019-b is a severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike (S)-protein vaccine consisting of full-length recombinant SARS-CoV-2 S-protein (S-910823) as antigen, mixed with the squalene-based adjuvant A-910823. The current study evaluated the immunogenicity of S-268019-b using various doses of S-910823 and its vaccine efficacy against SARS-CoV-2 challenge in cynomolgus monkeys. The different doses of S-910823 combined with A-910823 were intramuscularly administered twice at a 3-week interval. Two weeks after the second dosing, dose-dependent humoral immune responses were observed with neutralizing antibody titers being comparable to that of human convalescent plasma. Pseudoviruses harboring S proteins from Beta and Gamma SARS-CoV-2 variants displayed approximately 3- to 4-fold reduced sensitivity to neutralizing antibodies induced after two vaccine doses compared with that against ancestral viruses, whereas neutralizing antibody titers were reduced >14-fold against the Omicron variant. Cellular immunity was also induced with a relative Th1 polarized response. No adverse clinical signs or weight loss associated with the vaccine were observed, suggesting safety of the vaccine in cynomolgus monkeys. Immunization with 10 µg of S-910823 with A-910823 demonstrated protective efficacy against SARS-CoV-2 challenge according to genomic and subgenomic viral RNA transcript levels in nasopharyngeal, throat, and rectal swab specimens. Pathological analysis revealed no detectable vaccine-dependent enhancement of disease in the lungs of challenged vaccinated monkeys. The current findings provide fundamental information regarding vaccine doses for human trials and support the development of S-268019-b as a safe and effective vaccine for controlling the current pandemic, as well as general protection against SARS-CoV-2 moving forward.


Subject(s)
COVID-19 , Viral Vaccines , Animals , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , COVID-19/therapy , Immunization, Passive , Immunogenicity, Vaccine , Macaca fascicularis , SARS-CoV-2 , Spike Glycoprotein, Coronavirus
3.
Commun Biol ; 5(1): 483, 2022 05 19.
Article in English | MEDLINE | ID: covidwho-1852521

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) ORF6 is an antagonist of interferon (IFN)-mediated antiviral signaling, achieved through the prevention of STAT1 nuclear localization. However, the exact mechanism through which ORF6 prevents STAT1 nuclear trafficking remains unclear. Herein, we demonstrate that ORF6 directly binds to STAT1 with or without IFN stimulation, resulting in the nuclear exclusion of STAT1. ORF6 also recognizes importin α subtypes with different modes, in particular, high affinity to importin α1 but a low affinity to importin α5. Although ORF6 potentially disrupts the importin α/importin ß1-mediated nuclear transport, thereby suppressing the nuclear translocation of the other classical nuclear localization signal-containing cargo proteins, the inhibitory effect of ORF6 is modest when compared with that of STAT1. The results indicate that the drastic nuclear exclusion of STAT1 is attributed to the specific binding with ORF6, which is a distinct strategy for the importin α1-mediated pathway. Combined with the results from a newly-produced replicon system and a hamster model, we conclude that SARS-CoV-2 ORF6 acts as a virulence factor via regulation of nucleocytoplasmic trafficking to accelerate viral replication, resulting in disease progression.


Subject(s)
COVID-19 , SARS-CoV-2 , Viral Proteins/metabolism , Animals , Antiviral Agents , Biological Transport , Cricetinae , Viral Proteins/genetics , Virus Replication , alpha Karyopherins/genetics , alpha Karyopherins/metabolism
4.
Nat Commun ; 12(1): 3802, 2021 06 21.
Article in English | MEDLINE | ID: covidwho-1387351

ABSTRACT

SARS-CoV-2 has mutated during the global pandemic leading to viral adaptation to medications and vaccinations. Here we describe an engineered human virus receptor, ACE2, by mutagenesis and screening for binding to the receptor binding domain (RBD). Three cycles of random mutagenesis and cell sorting achieved sub-nanomolar affinity to RBD. Our structural data show that the enhanced affinity comes from better hydrophobic packing and hydrogen-bonding geometry at the interface. Additional disulfide mutations caused the fixing of a closed ACE2 conformation to avoid off-target effects of protease activity, and also improved structural stability. Our engineered ACE2 neutralized SARS-CoV-2 at a 100-fold lower concentration than wild type; we also report that no escape mutants emerged in the co-incubation after 15 passages. Therapeutic administration of engineered ACE2 protected hamsters from SARS-CoV-2 infection, decreased lung virus titers and pathology. Our results provide evidence of a therapeutic potential of engineered ACE2.


Subject(s)
Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/pharmacology , COVID-19/drug therapy , Mutation , SARS-CoV-2/drug effects , Spike Glycoprotein, Coronavirus/metabolism , Angiotensin-Converting Enzyme 2/metabolism , Animals , COVID-19/metabolism , COVID-19/virology , Cells, Cultured , Cricetinae , Crystallography, X-Ray , Disease Models, Animal , Humans , Male , Molecular Dynamics Simulation , Protein Binding , Protein Engineering/methods , SARS-CoV-2/isolation & purification , SARS-CoV-2/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL