ABSTRACT
OBJECTIVES: This is a longitudinal prospective study which was designed to assess the trend of anti-SARS-CoV-2 antibodies targeting the Spike (anti-S) and Nucleocapside protein (anti-N) viral antigens over a 9-month period after the administration of an anti-SARS-CoV-2 vaccine in a big COVID-19 hospital located in Northern Italy. PARTICIPANTS: 7411 vaccinated workers were included in a linear mixed-effect model analysis performed to model the anti-S decay over the 9 months following the vaccination, during serological screening performed approximately 2, 4, and 9 months following the first jab administration. Serological tests performed in the 9 months preceding vaccine administration were retrospectively analysed to identify the burden of infections occurring before vaccination. RESULTS: The serological assays were used for monitoring the antibody titres during the observational period. Vaccination significantly reduced the rate of infection and elicited a specific humoral response, which lasted during the whole observational period (9 months). A decay was observed in all considered subgroups. At 35 weeks, workers with no history of pre-vaccine infection showed a significantly lower anti-S titre (-2522 U/mL on average (-2589.7 to -2445.7)); younger workers showed significantly higher anti-S titres (140.2 U/mL on average (82.4 to 201.3)). Only seven immunocompromised workers did not show significant levels of anti-S antibodies; three of them, all females, showed a specific T-cell response. CONCLUSIONS: Comparing the 9-month periods before and after the first vaccine dose, a significant reduction in infection rate was observed (1708 cases vs. 156). Pre-vaccine infection, especially if contracted during the first pandemic wave, greatly enhanced the response to vaccination, which was significantly affected also by age both in extent and duration (inversely related). A gender effect on the T-cell immune response was observed in a small group of workers who did not produce antibodies after vaccine administration.
ABSTRACT
Short summary: We investigated changes in serologic measurements after COVID-19 vaccination in 19,422 subjects. An individual-level analysis was performed on standardized measurements. Age, infection, vaccine doses, time between doses and serologies, and vaccine type were associated with changes in serologic levels within 13 months. Background: Persistence of vaccine immunization is key for COVID-19 prevention. Methods: We investigated the difference between two serologic measurements of anti-COVID-19 S1 antibodies in an individual-level analysis on 19,422 vaccinated healthcare workers (HCW) from Italy, Spain, Romania, and Slovakia, tested within 13 months from first dose. Differences in serologic levels were divided by the standard error of the cohort-specific distribution, obtaining standardized measurements. We fitted multivariate linear regression models to identify predictors of difference between two measurements. Results: We observed a progressively decreasing difference in serologic levels from <30 days to 210-240 days. Age was associated with an increased difference in serologic levels. There was a greater difference between the two serologic measurements in infected HCW than in HCW who had never been infected; before the first measurement, infected HCW had a relative risk (RR) of 0.81 for one standard deviation in the difference [95% confidence interval (CI) 0.78-0.85]. The RRs for a 30-day increase in time between first dose and first serology, and between the two serologies, were 1.08 (95% CI 1.07-1.10) and 1.04 (95% CI 1.03-1.05), respectively. The first measurement was a strong predictor of subsequent antibody decrease (RR 1.60; 95% CI 1.56-1.64). Compared with Comirnaty, Spikevax (RR 0.83, 95% CI 0.75-0.92) and mixed vaccines (RR 0.61, 95% CI 0.51-0.74) were smaller decrease in serological level (RR 0.46; 95% CI 0.40-0.54). Conclusions: Age, COVID-19 infection, number of doses, time between first dose and first serology, time between serologies, and type of vaccine were associated with differences between the two serologic measurements within a 13-month period.
Subject(s)
COVID-19 Vaccines , COVID-19 , Humans , Infant , COVID-19/prevention & control , Antibodies , Health Personnel , ItalyABSTRACT
INTRODUCTION: Characterizing immunological response following COVID-19 vaccination is an important public health issue. The objectives of the present analysis were to investigate the proportion, level and the determinants of humoral response from 21 days to three months after the first dose in vaccinated healthcare workers (HCWs). METHODS: We abstracted data on level of anti-SARS-CoV-2 Spike antibodies (IgG) and sociodemographic characteristics of 17,257 HCWs from public hospitals and public health authorities from three centers in Northern Italy who underwent COVID-19 vaccination (average 70.6 days after first dose). We fitted center-specific multivariate regression models and combined them using random-effects meta-analyses. RESULTS: A humoral response was elicited in 99.3% of vaccinated HCW. Female sex, young age, and previous COVID-19 infection were predictors of post-vaccination antibody level, and a positive association was also detected with pre-vaccination serology level and with time between pre- and post-vaccination testing, while a decline of antibody level was suggested with time since vaccination. CONCLUSIONS: These results stress the importance of analyzing retrospective data collected via occupational health surveillance of HCWs during the COVID-19 epidemic and following vaccination. They need to be confirmed in larger series based on prospectively collected data.
Subject(s)
COVID-19 , RNA, Viral , Antibodies, Viral , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines , Female , Health Personnel , Humans , Retrospective Studies , SARS-CoV-2 , Vaccination/methodsABSTRACT
Healthcare workers (HCWs) are at increased risk of being infected with SARS-CoV-2, yet limited information is available on risk factors of infection. We pooled data on occupational surveillance of 10,654 HCW who were tested for SARS-CoV-2 infection in six Italian centers. Information was available on demographics, job title, department of employment, source of exposure, use of personal protective equipment (PPEs), and COVID-19-related symptoms. We fitted multivariable logistic regression models to calculate odds ratios and 95% confidence intervals of infection. The prevalence of infection ranged from 3.0 to 22.0%, and was correlated with that of the respective areas. Women were at lower risk of infection compared to men. Fever, cough, dyspnea and malaise were the symptoms most strongly associated with infection, together with anosmia and ageusia. No differences in the risk of infection were detected according to job title, or working in a COVID-19 designated department. Reported contact with a patient inside or outside the workplace was a risk factor. Use of a mask was strongly protective against risk of infection as was use of gloves. The use of a mask by the source of exposure (patient or colleague) had an independent effect in reducing infection risk.