Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Viruses ; 14(3)2022 02 27.
Article in English | MEDLINE | ID: covidwho-1744919

ABSTRACT

Respiratory viruses play an important role in asthma exacerbation, and early exposure can be involved in recurrent bronchitis and the development of asthma. The exact mechanism is not fully clarified, and pathogen-to-host interaction studies are warranted to identify biomarkers of exacerbation in the early phase. Only a limited number of international exacerbation cohorts were studied. Here, we have established a local pediatric exacerbation study in Germany consisting of children with asthma or chronic, recurrent bronchitis and analyzed the viriome within the nasopharyngeal swab specimens derived from the entire cohort (n = 141). Interestingly, 41% of exacerbated children had a positive test result for human rhinovirus (HRV)/human enterovirus (HEV), and 14% were positive for respiratory syncytial virus (RSV). HRV was particularly prevalent in asthmatics (56%), wheezers (50%), and atopic (66%) patients. Lymphocytes were decreased in asthmatics and in HRV-infected subjects, and patients allergic to house dust mites were more susceptible to HRV infection. Our study thus confirms HRV infection as a strong 'biomarker' of exacerbated asthma. Further longitudinal studies will show the clinical progress of those children with a history of an RSV or HRV infection. Vaccination strategies and novel treatment guidelines against HRV are urgently needed to protect those high-risk children from a serious course of disease.


Subject(s)
Asthma , Bronchitis , Enterovirus Infections , Enterovirus , Picornaviridae Infections , Respiratory Syncytial Virus Infections , Respiratory Syncytial Virus, Human , Respiratory Tract Infections , Virus Diseases , Viruses , Asthma/epidemiology , Biomarkers , Child , Humans , Infant , Respiratory Tract Infections/epidemiology , Rhinovirus
2.
EuropePMC; 2020.
Preprint in English | EuropePMC | ID: ppcovidwho-320611

ABSTRACT

SARS-CoV-2 is a new human coronavirus (CoV), which emerged in China in late 2019 and is responsible for the global COVID-19 pandemic that caused more than 59 million infections and 1.4 million deaths in 11 months. Understanding the origin of this virus is an important issue and it is necessary to determine the mechanisms of its dissemination in order to contain future epidemics. Based on phylogenetic inferences, sequence analysis and structure-function relationships of coronavirus proteins, informed by the knowledge currently available on the virus, we discuss the different scenarios evoked to account for the origin - natural or synthetic - of the virus. The data currently available is not sufficient to firmly assert whether SARS-CoV2 results from a zoonotic emergence or from an accidental escape of a laboratory strain. This question needs to be solved because it has important consequences on the evaluation of risk/benefit balance of our interaction with ecosystems, the intensive breeding of wild and domestic animals, as well as some lab practices and on scientific policy and biosafety regulations. Regardless of its origin, studying the evolution of the molecular mechanisms involved in the emergence of pandemic viruses is essential to develop therapeutic and vaccine strategies and to prevent future zoonoses. This article is a translation and update of a French article published in M{é}decine/Sciences, Aug/Sept 2020 (http://doi.org/10.1051/medsci/2020123).

3.
Microorganisms ; 9(12)2021 Dec 16.
Article in English | MEDLINE | ID: covidwho-1580574

ABSTRACT

The scale of the ongoing SARS-CoV-2 pandemic warrants the urgent establishment of a global decentralized surveillance system to recognize local outbreaks and the emergence of novel variants of concern. Among available deep-sequencing technologies, nanopore-sequencing could be an important cornerstone, as it is mobile, scalable, and cost-effective. Therefore, streamlined nanopore-sequencing protocols need to be developed and optimized for SARS-CoV-2 variants identification. We adapted and simplified existing workflows using the 'midnight' 1200 bp amplicon split primer sets for PCR, which produce tiled overlapping amplicons covering almost the entire SARS-CoV-2 genome. Subsequently, we applied Oxford Nanopore Rapid Barcoding and the portable MinION Mk1C sequencer combined with the interARTIC bioinformatics pipeline. We tested a simplified and less time-consuming workflow using SARS-CoV-2-positive specimens from clinical routine and identified the CT value as a useful pre-analytical parameter, which may help to decrease sequencing failures rates. Complete pipeline duration was approx. 7 h for one specimen and approx. 11 h for 12 multiplexed barcoded specimens. The adapted protocol contains fewer processing steps and can be completely conducted within one working day. Diagnostic CT values deduced from qPCR standardization experiments can act as principal criteria for specimen selection. As a guideline, SARS-CoV-2 genome copy numbers lower than 4 × 106 were associated with a coverage threshold below 20-fold and incompletely assembled SARS-CoV-2 genomes. Thus, based on the described thermocycler/chemistry combination, we recommend CT values of ~26 or lower to achieve full and high-quality SARS-CoV-2 (+)RNA genome coverage.

4.
Environ Chem Lett ; : 1-17, 2021 Feb 04.
Article in English | MEDLINE | ID: covidwho-1070871

ABSTRACT

SARS-CoV-2 is a new human coronavirus (CoV), which emerged in China in late 2019 and is responsible for the global COVID-19 pandemic that caused more than 97 million infections and 2 million deaths in 12 months. Understanding the origin of this virus is an important issue, and it is necessary to determine the mechanisms of viral dissemination in order to contain future epidemics. Based on phylogenetic inferences, sequence analysis and structure-function relationships of coronavirus proteins, informed by the knowledge currently available on the virus, we discuss the different scenarios on the origin-natural or synthetic-of the virus. The data currently available are not sufficient to firmly assert whether SARS-CoV2 results from a zoonotic emergence or from an accidental escape of a laboratory strain. This question needs to be solved because it has important consequences on the risk/benefit balance of our interactions with ecosystems, on intensive breeding of wild and domestic animals, on some laboratory practices and on scientific policy and biosafety regulations. Regardless of COVID-19 origin, studying the evolution of the molecular mechanisms involved in the emergence of pandemic viruses is essential to develop therapeutic and vaccine strategies and to prevent future zoonoses. This article is a translation and update of a French article published in Médecine/Sciences, August/September 2020 (10.1051/medsci/2020123). SUPPLEMENTARY INFORMATION: The online version of this article (10.1007/s10311-020-01151-1) contains supplementary material, which is available to authorized users.

5.
Med Sci (Paris) ; 36(8-9): 783-796, 2020.
Article in French | MEDLINE | ID: covidwho-706965

ABSTRACT

SARS-CoV-2 is a new human coronavirus (CoV), which emerged in People's Republic of China at the end of 2019 and is responsible for the global Covid-19 pandemic that caused more than 540 000 deaths in six months. Understanding the origin of this virus is an important issue and it is necessary to determine the mechanisms of its dissemination in order to be able to contain new epidemics. Based on phylogenetic inferences, sequence analysis and structure-function relationships of coronavirus proteins, informed by the knowledge currently available, we discuss the different scenarios evoked to account for the origin - natural or synthetic - of the virus. On the basis of currently available data, it is impossible to determine whether SARS-CoV-2 is the result of a natural zoonotic emergence or an accidental escape from experimental strains. Regardless of its origin, the study of the evolution of the molecular mechanisms involved in the emergence of this pandemic virus is essential to develop therapeutic and vaccine strategies.


TITLE: Retrouver les origines du SARS-CoV-2 dans les phylogénies de coronavirus. ABSTRACT: Le SARS-CoV-2 est un nouveau coronavirus (CoV) humain. Il a émergé en Chine fin 2019 et est responsable de la pandémie mondiale de Covid-19 qui a causé plus de 540 000 décès en six mois. La compréhension de l'origine de ce virus est une question importante et il est nécessaire de déterminer les mécanismes de sa dissémination afin de pouvoir se prémunir de nouvelles épidémies. En nous fondant sur des inférences phylogénétiques, l'analyse des séquences et les relations structure-fonction des protéines de coronavirus, éclairées par les connaissances actuellement disponibles, nous discutons les différents scénarios évoqués pour rendre compte de l'origine - naturelle ou synthétique - du virus.


Subject(s)
Betacoronavirus/genetics , Communicable Diseases, Emerging/virology , Coronavirus Infections/virology , Coronavirus/classification , Evolution, Molecular , Pandemics , Phylogeny , Pneumonia, Viral/virology , RNA, Viral/genetics , Amino Acid Sequence , Animals , Betacoronavirus/classification , Betacoronavirus/isolation & purification , Biohazard Release , COVID-19 , China/epidemiology , Coronaviridae Infections/transmission , Coronaviridae Infections/veterinary , Coronaviridae Infections/virology , Coronavirus Infections/epidemiology , Coronavirus Infections/transmission , Disease Reservoirs , Gain of Function Mutation , Genome, Viral , HIV/genetics , Host Specificity , Humans , Mammals/virology , Pneumonia, Viral/epidemiology , Pneumonia, Viral/transmission , Reassortant Viruses/genetics , SARS-CoV-2 , Sequence Alignment , Sequence Homology, Amino Acid , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/physiology , Zoonoses
7.
Antiviral Res ; 178: 104791, 2020 06.
Article in English | MEDLINE | ID: covidwho-49066

ABSTRACT

Type 1 interferons have a broad antiviral activity in vitro and are currently evaluated in a clinical trial to treat MERS-CoV. In this review, we discuss preliminary data concerning the potential activity of type 1 interferons on SARS-CoV-2, and the relevance of evaluating these molecules in clinical trials for the treatment of COVID-19.


Subject(s)
Antiviral Agents/therapeutic use , Coronavirus Infections/drug therapy , Interferon Type I/therapeutic use , Pneumonia, Viral/drug therapy , Betacoronavirus/isolation & purification , COVID-19 , Coronavirus Infections/virology , Humans , Pandemics , Pneumonia, Viral/virology , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL