Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
Wien Klin Wochenschr ; 134(9-10): 399-419, 2022 May.
Article in English | MEDLINE | ID: covidwho-1802740

ABSTRACT

The Austrian Society of Pneumology (ASP) launched a first statement on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in May 2020, at a time when in Austria 285 people had died from this disease and vaccinations were not available. Lockdown and social distancing were the only available measures to prevent more infections and the breakdown of the health system. Meanwhile, in Austria over 13,000 patients have died in association with a SARS-CoV­2 infection and coronavirus disease 2019 (COVID-19) was among the most common causes of death; however, SARS-CoV­2 has been mutating all the time and currently, most patients have been affected by the delta variant where the vaccination is very effective but the omicron variant is rapidly rising and becoming predominant. Particularly in children and young adults, where the vaccination rate is low, the omicron variant is expected to spread very fast. This poses a particular threat to unvaccinated people who are at elevated risk of severe COVID-19 disease but also to people with an active vaccination. There are few publications that comprehensively addressed the special issues with SARS-CoV­2 infection in patients with chronic lung diseases. These were the reasons for this updated statement. Pulmonologists care for many patients with an elevated risk of death in case of COVID-19 but also for patients that might be at an elevated risk of vaccination reactions or vaccination failure. In addition, lung function tests, bronchoscopy, respiratory physiotherapy and training therapy may put both patients and health professionals at an increased risk of infection. The working circles of the ASP have provided statements concerning these risks and how to avoid risks for the patients.


Subject(s)
COVID-19 , Lung Diseases , Pulmonary Medicine , Austria/epidemiology , COVID-19/epidemiology , Child , Communicable Disease Control , Humans , Lung Diseases/epidemiology , Lung Diseases/therapy , SARS-CoV-2 , Young Adult
2.
J Fungi (Basel) ; 8(3)2022 Mar 13.
Article in English | MEDLINE | ID: covidwho-1765755

ABSTRACT

Chronic pulmonary aspergillosis (CPA) is a potentially life-threatening fungal lung infection, and recent research suggests CPA to be more common than previously considered. Although CPA mimics other lung diseases including pulmonary cancer, awareness of this disease entity is still sparse. This study aimed to investigate the prevalence of CPA in a population of patients under suspicion of having lung cancer. We conducted a retrospective cohort study of 1200 patients and manually collected individual health record data from previous cancer examinations, with retrospective CPA status assessment using international criteria. Among 992 included patients, 16 (1.6%) fulfilled diagnostic criteria for CPA retrospectively, of whom 15 were undiscovered at initial lung cancer examination. The prevalence of CPA in this study population was 50 times higher than the reported prevalence of the overall European population. Our findings indicate that CPA is often missed in patients suspected of malignancy in the chest. Therefore, CPA should be kept in mind as a significant differential diagnosis.

3.
Case Rep Pulmonol ; 2022: 1008330, 2022.
Article in English | MEDLINE | ID: covidwho-1702636

ABSTRACT

PURPOSE: We report the development of a lung abscess caused by a ciprofloxacin-resistant Pseudomonas aeruginosa in a patient with COVID-19 on long-term corticosteroid therapy. Successful antimicrobial treatment included the novel oral fluoroquinolone delafloxacin suggesting an oral administration option for ciprofloxacin-resistant Pseudomonas aeruginosa lung abscess. Case Presentation. An 86-year-old male was admitted to the hospital with fever, dry cough, and fatigue. PCR testing from a nasopharyngeal swab confirmed SARS-CoV-2 infection. An initial CT scan of the chest showed COVID-19 typical peripheral ground-glass opacities of both lungs. The patient required supplemental oxygen, and anti-inflammatory treatment with corticosteroids was initiated. After four weeks of corticosteroid therapy, the follow-up CT scan of the chest suddenly showed a new cavernous formation in the right lower lung lobe. The patient's condition deteriorated requiring high-flow oxygen support. Consequently, the patient was transferred to the intensive care unit. Empiric therapy with intravenous piperacillin/tazobactam was started. Mycobacterial and fungal infections were excluded, while all sputum samples revealed cultural growth of P. aeruginosa. Antimicrobial susceptibility testing showed resistance to meropenem, imipenem, ciprofloxacin, gentamicin, and tobramycin. After two weeks of treatment with intravenous piperacillin/tazobactam, the clinical condition improved significantly, and supplemental oxygen could be stopped. Subsequently antimicrobial treatment was switched to oral delafloxacin facilitating an outpatient management. CONCLUSION: Our case demonstrates that long-term corticosteroid administration in severe COVID-19 can result in severe bacterial coinfections including P. aeruginosa lung abscess. To our knowledge, this is the first reported case of a P. aeruginosa lung abscess whose successful therapy included oral delafloxacin. This is important because real-life data for the novel drug delafloxacin are scarce, and fluoroquinolones are the only reliable oral treatment option for P. aeruginosa infection. Even more importantly, our case suggests an oral therapy option for P. aeruginosa lung abscess in case of resistance to ciprofloxacin, the most widely used fluoroquinolone in P. aeruginosa infection.

4.
Front Cell Infect Microbiol ; 11: 795026, 2021.
Article in English | MEDLINE | ID: covidwho-1686455

ABSTRACT

Objective: To develop and validate a prognostic model for in-hospital mortality after four days based on age, fever at admission and five haematological parameters routinely measured in hospitalized Covid-19 patients during the first four days after admission. Methods: Haematological parameters measured during the first 4 days after admission were subjected to a linear mixed model to obtain patient-specific intercepts and slopes for each parameter. A prediction model was built using logistic regression with variable selection and shrinkage factor estimation supported by bootstrapping. Model development was based on 481 survivors and 97 non-survivors, hospitalized before the occurrence of mutations. Internal validation was done by 10-fold cross-validation. The model was temporally-externally validated in 299 survivors and 42 non-survivors hospitalized when the Alpha variant (B.1.1.7) was prevalent. Results: The final model included age, fever on admission as well as the slope or intercept of lactate dehydrogenase, platelet count, C-reactive protein, and creatinine. Tenfold cross validation resulted in a mean area under the receiver operating characteristic curve (AUROC) of 0.92, a mean calibration slope of 1.0023 and a Brier score of 0.076. At temporal-external validation, application of the previously developed model showed an AUROC of 0.88, a calibration slope of 0.95 and a Brier score of 0.073. Regarding the relative importance of the variables, the (apparent) variation in mortality explained by the six variables deduced from the haematological parameters measured during the first four days is higher (explained variation 0.295) than that of age (0.210). Conclusions: The presented model requires only variables routinely acquired in hospitals, which allows immediate and wide-spread use as a decision support for earlier discharge of low-risk patients to reduce the burden on the health care system. Clinical Trial Registration: Austrian Coronavirus Adaptive Clinical Trial (ACOVACT); ClinicalTrials.gov, identifier NCT04351724.


Subject(s)
COVID-19 , SARS-CoV-2 , Hospital Mortality , Hospitalization , Humans , Retrospective Studies
5.
Cardiovasc Res ; 117(14): 2807-2820, 2021 12 17.
Article in English | MEDLINE | ID: covidwho-1596913

ABSTRACT

AIMS: Anticoagulation was associated with improved survival of hospitalized coronavirus disease 2019 (COVID-19) patients in large-scale studies. Yet, the development of COVID-19-associated coagulopathy (CAC) and the mechanism responsible for improved survival of anticoagulated patients with COVID-19 remain largely elusive. This investigation aimed to explore the effects of anticoagulation and low-molecular-weight heparin (LMWH) in particular on patient outcome, CAC development, thromboinflammation, cell death, and viral persistence. METHODS AND RESULTS: Data of 586 hospitalized COVID-19 patients from three different regions of Austria were evaluated retrospectively. Of these, 419 (71.5%) patients received LMWH and 62 (10.5%) received non-vitamin-K oral anticoagulants (NOACs) during hospitalization. Plasma was collected at different time points in a subset of 106 patients in order to evaluate markers of thromboinflammation (H3Cit-DNA) and the cell death marker cell-free DNA (cfDNA). Use of LMWH was associated with improved survival upon multivariable Cox regression (hazard ratio = 0.561, 95% confidence interval: 0.348-0.906). Interestingly, neither LMWH nor NOAC was associated with attenuation of D-dimer increase over time, or thromboinflammation. In contrast, anticoagulation was associated with a decrease in cfDNA during hospitalization, and curtailed viral persistence was observed in patients using LMWH leading to a 4-day reduction of virus positivity upon quantitative polymerase chain reaction [13 (interquartile range: 6-24) vs. 9 (interquartile range: 5-16) days, P = 0.009]. CONCLUSION: Time courses of haemostatic and thromboinflammatory biomarkers were similar in patients with and without LMWH, indicating either no effects of LMWH on haemostasis or that LMWH reduced hypercoagulability to levels of patients without LMWH. Nonetheless, anticoagulation with LMWH was associated with reduced mortality, improved markers of cell death, and curtailed viral persistence, indicating potential beneficial effects of LMWH beyond haemostasis, which encourages use of LMWH in COVID-19 patients without contraindications.


Subject(s)
Anticoagulants/therapeutic use , COVID-19/drug therapy , Heparin, Low-Molecular-Weight/therapeutic use , /virology , Aged , Anticoagulants/pharmacology , Austria/epidemiology , Biomarkers/blood , COVID-19/blood , COVID-19/complications , COVID-19/mortality , Female , Hemostasis , Heparin, Low-Molecular-Weight/pharmacology , Humans , Male , Middle Aged , Predictive Value of Tests , Retrospective Studies , SARS-CoV-2/drug effects , /prevention & control
6.
Cardiovasc Res ; 117(14): 2807-2820, 2021 12 17.
Article in English | MEDLINE | ID: covidwho-1450385

ABSTRACT

AIMS: Anticoagulation was associated with improved survival of hospitalized coronavirus disease 2019 (COVID-19) patients in large-scale studies. Yet, the development of COVID-19-associated coagulopathy (CAC) and the mechanism responsible for improved survival of anticoagulated patients with COVID-19 remain largely elusive. This investigation aimed to explore the effects of anticoagulation and low-molecular-weight heparin (LMWH) in particular on patient outcome, CAC development, thromboinflammation, cell death, and viral persistence. METHODS AND RESULTS: Data of 586 hospitalized COVID-19 patients from three different regions of Austria were evaluated retrospectively. Of these, 419 (71.5%) patients received LMWH and 62 (10.5%) received non-vitamin-K oral anticoagulants (NOACs) during hospitalization. Plasma was collected at different time points in a subset of 106 patients in order to evaluate markers of thromboinflammation (H3Cit-DNA) and the cell death marker cell-free DNA (cfDNA). Use of LMWH was associated with improved survival upon multivariable Cox regression (hazard ratio = 0.561, 95% confidence interval: 0.348-0.906). Interestingly, neither LMWH nor NOAC was associated with attenuation of D-dimer increase over time, or thromboinflammation. In contrast, anticoagulation was associated with a decrease in cfDNA during hospitalization, and curtailed viral persistence was observed in patients using LMWH leading to a 4-day reduction of virus positivity upon quantitative polymerase chain reaction [13 (interquartile range: 6-24) vs. 9 (interquartile range: 5-16) days, P = 0.009]. CONCLUSION: Time courses of haemostatic and thromboinflammatory biomarkers were similar in patients with and without LMWH, indicating either no effects of LMWH on haemostasis or that LMWH reduced hypercoagulability to levels of patients without LMWH. Nonetheless, anticoagulation with LMWH was associated with reduced mortality, improved markers of cell death, and curtailed viral persistence, indicating potential beneficial effects of LMWH beyond haemostasis, which encourages use of LMWH in COVID-19 patients without contraindications.


Subject(s)
Anticoagulants/therapeutic use , COVID-19/drug therapy , Heparin, Low-Molecular-Weight/therapeutic use , /virology , Aged , Anticoagulants/pharmacology , Austria/epidemiology , Biomarkers/blood , COVID-19/blood , COVID-19/complications , COVID-19/mortality , Female , Hemostasis , Heparin, Low-Molecular-Weight/pharmacology , Humans , Male , Middle Aged , Predictive Value of Tests , Retrospective Studies , SARS-CoV-2/drug effects , /prevention & control
7.
Nature ; 599(7884): 283-289, 2021 11.
Article in English | MEDLINE | ID: covidwho-1404888

ABSTRACT

Derailed cytokine and immune cell networks account for the organ damage and the clinical severity of COVID-19 (refs. 1-4). Here we show that SARS-CoV-2, like other viruses, evokes cellular senescence as a primary stress response in infected cells. Virus-induced senescence (VIS) is indistinguishable from other forms of cellular senescence and is accompanied by a senescence-associated secretory phenotype (SASP), which comprises pro-inflammatory cytokines, extracellular-matrix-active factors and pro-coagulatory mediators5-7. Patients with COVID-19 displayed markers of senescence in their airway mucosa in situ and increased serum levels of SASP factors. In vitro assays demonstrated macrophage activation with SASP-reminiscent secretion, complement lysis and SASP-amplifying secondary senescence of endothelial cells, which mirrored hallmark features of COVID-19 such as macrophage and neutrophil infiltration, endothelial damage and widespread thrombosis in affected lung tissue1,8,9. Moreover, supernatant from VIS cells, including SARS-CoV-2-induced senescence, induced neutrophil extracellular trap formation and activation of platelets and the clotting cascade. Senolytics such as navitoclax and a combination of dasatinib plus quercetin selectively eliminated VIS cells, mitigated COVID-19-reminiscent lung disease and reduced inflammation in SARS-CoV-2-infected hamsters and mice. Our findings mark VIS as a pathogenic trigger of COVID-19-related cytokine escalation and organ damage, and suggest that senolytic targeting of virus-infected cells is a treatment option against SARS-CoV-2 and perhaps other viral infections.


Subject(s)
COVID-19/drug therapy , COVID-19/pathology , COVID-19/virology , Cellular Senescence/drug effects , Molecular Targeted Therapy , SARS-CoV-2/pathogenicity , Aniline Compounds/pharmacology , Aniline Compounds/therapeutic use , Animals , COVID-19/complications , Cell Line , Cricetinae , Dasatinib/pharmacology , Dasatinib/therapeutic use , Disease Models, Animal , Female , Humans , Male , Mice , Quercetin/pharmacology , Quercetin/therapeutic use , SARS-CoV-2/drug effects , Sulfonamides/pharmacology , Sulfonamides/therapeutic use , Thrombosis/complications , Thrombosis/immunology , Thrombosis/metabolism
9.
Viruses ; 13(9)2021 08 28.
Article in English | MEDLINE | ID: covidwho-1374538

ABSTRACT

The SARS-CoV-2 pandemic has required the development of multiple testing systems to monitor and control the viral infection. Here, we developed a PCR test to screen COVID-19 infections that can process up to ~180 samples per day without the requirement of robotics. For this purpose, we implemented the use of multichannel pipettes and plate magnetics for the RNA extraction step and combined the reverse transcription with the qPCR within one step. We tested the performance of two RT-qPCR kits as well as different sampling buffers and showed that samples taken in NaCl or PBS are stable and compatible with different COVID-19 testing systems. Finally, we designed a new internal control based on the human RNase P gene that does not require a DNA digestion step. Our protocol is easy to handle and reaches the sensitivity and accuracy of the standardized diagnostic protocols used in the clinic to detect COVID-19 infections.


Subject(s)
COVID-19 Nucleic Acid Testing/methods , COVID-19/diagnosis , COVID-19/virology , Polymerase Chain Reaction , SARS-CoV-2 , COVID-19 Nucleic Acid Testing/standards , Humans , Polymerase Chain Reaction/methods , Polymerase Chain Reaction/standards , Reagent Kits, Diagnostic , Real-Time Polymerase Chain Reaction/methods , Real-Time Polymerase Chain Reaction/standards , Reproducibility of Results , SARS-CoV-2/genetics , Sensitivity and Specificity , Viral Load
10.
Wien Med Wochenschr ; 172(9-10): 211-219, 2022 Jun.
Article in English | MEDLINE | ID: covidwho-1286151

ABSTRACT

BACKGROUND: In December 2019, the new virus infection coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged. Simple clinical risk scores may improve the management of COVID-19 patients. Therefore, the aim of this pilot study was to evaluate the quick Sequential Organ Failure Assessment (qSOFA) score, which is well established for other diseases, as an early risk assessment tool predicting a severe course of COVID-19. METHODS: We retrospectively analyzed data from adult COVID-19 patients hospitalized between March and July 2020. A critical disease progress was defined as admission to intensive care unit (ICU) or death. RESULTS: Of 64 COVID-19 patients, 33% (21/64) had a critical disease progression from which 13 patients had to be transferred to ICU. The COVID-19-associated mortality rate was 20%, increasing to 39% after ICU admission. All patients without a critical progress had a qSOFA score ≤ 1 at admission. Patients with a critical progress had in only 14% (3/21) and in 20% (3/15) of cases a qSOFA score ≥ 2 at admission (p = 0.023) or when measured directly before critical progression, respectively, while 95% (20/21) of patients with critical progress had an impairment oxygen saturation (SO2) at admission time requiring oxygen supplementation. CONCLUSION: A low qSOFA score cannot be used to assume short-term stable or noncritical disease status in COVID-19.


Subject(s)
COVID-19 , Sepsis , Adult , COVID-19/diagnosis , Hospital Mortality , Humans , Intensive Care Units , Organ Dysfunction Scores , Pilot Projects , Prognosis , Retrospective Studies , SARS-CoV-2
12.
ESC Heart Fail ; 8(1): 37-46, 2021 02.
Article in English | MEDLINE | ID: covidwho-1064350

ABSTRACT

AIMS: COVID-19, a respiratory viral disease causing severe pneumonia, also affects the heart and other organs. Whether its cardiac involvement is a specific feature consisting of myocarditis, or simply due to microvascular injury and systemic inflammation, is yet unclear and presently debated. Because myocardial injury is also common in other kinds of pneumonias, we investigated and compared such occurrence in severe pneumonias due to COVID-19 and other causes. METHODS AND RESULTS: We analysed data from 156 critically ill patients requiring mechanical ventilation in four European tertiary hospitals, including all n = 76 COVID-19 patients with severe disease course requiring at least ventilatory support, matched to n = 76 from a retrospective consecutive patient cohort of severe pneumonias of other origin (matched for age, gender, and type of ventilator therapy). When compared to the non-COVID-19, mortality (COVID-19 = 38.2% vs. non-COVID-19 = 51.3%, P = 0.142) and impairment of systolic function were not significantly different. Surprisingly, myocardial injury was even more frequent in non-COVID-19 (96.4% vs. 78.1% P = 0.004). Although inflammatory activity [C-reactive protein (CRP) and interleukin-6] was indifferent, d-dimer and thromboembolic incidence (COVID-19 = 23.7% vs. non-COVID-19 = 5.3%, P = 0.002) driven by pulmonary embolism rates (COVID-19 = 17.1% vs. non-COVID-19 = 2.6%, P = 0.005) were higher. CONCLUSIONS: Myocardial injury was frequent in severe COVID-19 requiring mechanical ventilation, but still less frequent than in similarly severe pneumonias of other origin, indicating that cardiac involvement may not be a specific feature of COVID-19. While mortality was also similar, COVID-19 is characterized with increased thrombogenicity and high pulmonary embolism rates.


Subject(s)
COVID-19/complications , Cardiomyopathies/etiology , Acute Disease , Aged , COVID-19/mortality , COVID-19/therapy , Cardiomyopathies/mortality , Case-Control Studies , Female , Humans , Intensive Care Units/statistics & numerical data , Length of Stay/statistics & numerical data , Male , Myocarditis/etiology , Myocarditis/mortality , Pneumonia/complications , Respiration, Artificial , Retrospective Studies , Tertiary Care Centers
14.
Wien Klin Wochenschr ; 132(13-14): 365-386, 2020 Jul.
Article in English | MEDLINE | ID: covidwho-996394

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic is currently a challenge worldwide. In Austria, a crisis within the healthcare system has so far been prevented. The treatment of patients with community-acquired pneumonia (CAP), including SARS-CoV­2 infections, should continue to be based on evidence-based CAP guidelines during the pandemic; however, COVID-19 specific adjustments are useful. The treatment of patients with chronic lung diseases has to be adapted during the pandemic but must still be guaranteed.


Subject(s)
Coronavirus Infections , Coronavirus , Lung Diseases/complications , Pandemics , Pneumonia, Viral , Pulmonary Medicine , Adolescent , Adult , Austria , Betacoronavirus , COVID-19 , Child , Chronic Disease , Coronavirus Infections/complications , Coronavirus Infections/diagnosis , Coronavirus Infections/therapy , Humans , Lung Diseases/therapy , Pneumonia, Viral/complications , Pneumonia, Viral/diagnosis , Pneumonia, Viral/therapy , Practice Guidelines as Topic , SARS-CoV-2
16.
Cardiovasc Pathol ; 49: 107263, 2020.
Article in English | MEDLINE | ID: covidwho-650406

ABSTRACT

Since its recognition in December 2019, coronavirus disease 2019 (COVID-19) caused by SARS-CoV-2 has rapidly spread globally causing a pandemic that represents the greatest medical challenge in decades. The aim of the study was to evaluate the spectrum of cardiopulmonary pathology of COVID-19 based on (non-minimal invasive) autopsies performed on 14 COVID-19 decedents. Bilateral diffuse alveolar damage (DAD) was found in all patients. Superimposed acute bronchopneumonia was present in 11 of 14 (78.6%) patients and was considered the major cause of death in 2 patients. A key finding was the presence of thrombotic/thromboembolic vascular occlusions. We classified 5 types of pulmonary thrombi: 1. capillary microthrombi (11/14, 78.6%); 2. partially organized thrombi in mid-sized pulmonary arteries with complete vessel occlusion; 3. non-organized thrombi in mid-sized pulmonary arteries that did not completely fill out the vessel lumen and probably represented thromboemboli rather than thrombosis; 4. bone marrow emboli (1/14, 7.1%); and 5. septic pulmonary thromboemboli (1/14, 7.1%). Pulmonary thrombi in mid-sized arteries were noted in 5 of 14 (35.7%) patients, causing pulmonary infarction and/or pulmonary hemorrhage. All patients had evidence of chronic cardiac disease, including myocardial hypertrophy (13/14, 92.9%), mild to marked coronary artery atherosclerosis (14/14, 100%) and focal myocardial fibrosis (3/14, 21.4%). Acute myocardial infarction was found as concurrent cause of death in 3 (21.4%) patients, and significant cardiac hypertrophy (heart weight 750 g) was present in 1 (7.1%) patient with ATTR-positive cardiac amyloidosis. The autopsy findings confirm that COVID-19 is a systemic disease, with major involvement of the lungs, that increases the risk of cardiac and vascular complications including acute myocardial injury and thrombotic/thromboembolic events. Secondary acute bronchopneumonia is a common complication in patients with COVID-19 and may be the major cause of death.


Subject(s)
Bronchopneumonia/pathology , Coronavirus Infections/complications , Coronavirus Infections/pathology , Pneumonia, Viral/complications , Pneumonia, Viral/pathology , Pulmonary Artery/pathology , Thrombosis/pathology , Aged , Aged, 80 and over , Autopsy , Betacoronavirus , Bronchopneumonia/virology , COVID-19 , Female , Humans , Incidence , Male , Middle Aged , Pandemics , Pulmonary Embolism/pathology , Pulmonary Embolism/virology , SARS-CoV-2 , Thrombosis/virology
SELECTION OF CITATIONS
SEARCH DETAIL