Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Eur J Neurol ; 28(8): 2603-2613, 2021 08.
Article in English | MEDLINE | ID: covidwho-1518029

ABSTRACT

BACKGROUND AND PURPOSE: Nasu-Hakola disease (NHD) is a rare, autosomal recessive disorder characterized by skeletal and neurological symptoms. Behavioral symptoms with cognitive impairment may mimic the behavioral variant of frontotemporal dementia (bvFTD) and other early-onset dementias. Our patients were analyzed and the literature was reviewed to delineate neurological and neuroimaging findings suggestive of NHD. METHOD: Fourteen patients carrying a pathogenic mutation in the TREM2 gene were found in our database. Demographic, clinical, laboratory and radiological data were retrieved and analyzed. RESULTS: The presenting clinical picture was behavioral changes with cognitive decline resembling bvFTD in all patients. The mean age was 37.1 ± 4.97 years and the mean duration of the disease was 8.9 ± 3.51 years. Only two patients had typical bone cysts. Seven patients had bilateral calcification of the basal ganglia in computed tomography of the brain. Magnetic resonance imaging of the brain revealed severe atrophy of the corpus callosum, enlargement of the ventricles, atrophy of the caudate nuclei and periventricular white matter changes in all patients. Symmetrical global atrophy of the brain mainly affecting frontoparietal and lateral temporal regions were observed in all cases, and 13 patients had atrophy of the hippocampus. Cerebrospinal fluid examination of 10 patients showed elevated protein levels in six and the presence of oligoclonal bands in four patients. CONCLUSION: A combination of white matter changes, enlarged ventricles, atrophy of the caudate nuclei and thinning of the corpus callosum in magnetic resonance imaging strongly suggests NHD in patients with FTD syndrome. Molecular genetic analysis should be performed in suspected cases, and families should receive genetic counseling.


Subject(s)
Frontotemporal Dementia , Lipodystrophy , Membrane Glycoproteins/genetics , Osteochondrodysplasias , Receptors, Immunologic/genetics , Subacute Sclerosing Panencephalitis , Adult , Brain/diagnostic imaging , Frontotemporal Dementia/diagnostic imaging , Frontotemporal Dementia/genetics , Humans , Magnetic Resonance Imaging , Neuroimaging
2.
Noropsikiyatri Arsivi ; 57(2):154-159, 2020.
Article in English | APA PsycInfo | ID: covidwho-1148442

ABSTRACT

Some respiratory viruses have long been known to cause neurological involvement. A novel coronavirus, leading to severe acute respiratory syndrome, also called coronavirus disease 19 (COVID-19), seems to be a new member of neuroinvasive viruses. While severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) keeps on spreading around the world rapidly, reports about the neurological manifestations associated with SARS-CoV-2, increases day by day. It is reported that a variety of symptoms and syndromes such as headache, dizziness, confusion, ataxia, epilepsy, ischemic stroke, neuropathic pain and myopathy are common especially in more severe COVID-19 patients. It is also suggested that the development of neurological complications is strongly associated with a poor outcome. On the other hand, hyposmia can be the unique symptom in COVID-19 carriers and this can serve as a marker for identifying the otherwise asymptomatically infected patients. It is thought that SARSCoV-2 may cause neurological symptoms through direct or indirect mechanisms. Nevertheless, neuroinvasion capability of SARS-CoV2 is confirmed by the presence of the virus, in the cerebrospinal fluid of a COVID-19 patient with encephalitis, and this is proven by gene sequencing. In conclusion, during the COVID-19 pandemic, it is crucial to be aware of the possible neurological complications of the disease. Therefore, in this review, we aimed to report neurological manifestations associated with SARS-CoV-2 and possible underlying pathophysiological mechanisms. Due to the high homology of SARS-CoV-2 with other human coronaviruses such as SARS-CoV or Middle East Respiratory Syndrome (MERS)-CoV, reviewing the neurological involvement also associated with these coronaviruses will provide an idea about the longterm complications of COVID-19. (PsycInfo Database Record (c) 2021 APA, all rights reserved)

3.
Noro Psikiyatr Ars ; 57(2): 154-159, 2020 Jun.
Article in English | MEDLINE | ID: covidwho-820038

ABSTRACT

Some respiratory viruses have long been known to cause neurological involvement. A novel coronavirus, leading to severe acute respiratory syndrome, also called coronavirus disease 19 (COVID-19), seems to be a new member of neuroinvasive viruses. While severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) keeps on spreading around the world rapidly, reports about the neurological manifestations associated with SARS-CoV-2, increases day by day. It is reported that a variety of symptoms and syndromes such as headache, dizziness, confusion, ataxia, epilepsy, ischemic stroke, neuropathic pain and myopathy are common especially in more severe COVID-19 patients. It is also suggested that the development of neurological complications is strongly associated with a poor outcome. On the other hand, hyposmia can be the unique symptom in COVID-19 carriers and this can serve as a marker for identifying the otherwise asymptomatically infected patients. It is thought that SARS-CoV-2 may cause neurological symptoms through direct or indirect mechanisms. Nevertheless, neuroinvasion capability of SARS-CoV2 is confirmed by the presence of the virus, in the cerebrospinal fluid of a COVID-19 patient with encephalitis, and this is proven by gene sequencing. In conclusion, during the COVID-19 pandemic, it is crucial to be aware of the possible neurological complications of the disease. Therefore, in this review, we aimed to report neurological manifestations associated with SARS-CoV-2 and possible underlying pathophysiological mechanisms. Due to the high homology of SARS-CoV-2 with other human coronaviruses such as SARS-CoV or Middle East Respiratory Syndrome (MERS)-CoV, reviewing the neurological involvement also associated with these coronaviruses will provide an idea about the long-term complications of COVID-19.

SELECTION OF CITATIONS
SEARCH DETAIL