Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Sci Rep ; 11(1): 20238, 2021 10 12.
Article in English | MEDLINE | ID: covidwho-1467130

ABSTRACT

Neurological complications worsen outcomes in COVID-19. To define the prevalence of neurological conditions among hospitalized patients with a positive SARS-CoV-2 reverse transcription polymerase chain reaction test in geographically diverse multinational populations during early pandemic, we used electronic health records (EHR) from 338 participating hospitals across 6 countries and 3 continents (January-September 2020) for a cross-sectional analysis. We assessed the frequency of International Classification of Disease code of neurological conditions by countries, healthcare systems, time before and after admission for COVID-19 and COVID-19 severity. Among 35,177 hospitalized patients with SARS-CoV-2 infection, there was an increase in the proportion with disorders of consciousness (5.8%, 95% confidence interval [CI] 3.7-7.8%, pFDR < 0.001) and unspecified disorders of the brain (8.1%, 5.7-10.5%, pFDR < 0.001) when compared to the pre-admission proportion. During hospitalization, the relative risk of disorders of consciousness (22%, 19-25%), cerebrovascular diseases (24%, 13-35%), nontraumatic intracranial hemorrhage (34%, 20-50%), encephalitis and/or myelitis (37%, 17-60%) and myopathy (72%, 67-77%) were higher for patients with severe COVID-19 when compared to those who never experienced severe COVID-19. Leveraging a multinational network to capture standardized EHR data, we highlighted the increased prevalence of central and peripheral neurological phenotypes in patients hospitalized with COVID-19, particularly among those with severe disease.


Subject(s)
COVID-19 , Nervous System Diseases , Pandemics , Adolescent , Adult , Aged , Aged, 80 and over , COVID-19/complications , COVID-19/epidemiology , Child , Child, Preschool , Cross-Sectional Studies , Female , Humans , Infant , Infant, Newborn , Male , Middle Aged , Nervous System Diseases/epidemiology , Nervous System Diseases/etiology , Prevalence , Severity of Illness Index , Young Adult
2.
JAMIA Open ; 4(2): ooab036, 2021 Apr.
Article in English | MEDLINE | ID: covidwho-1266122

ABSTRACT

Clinical data networks that leverage large volumes of data in electronic health records (EHRs) are significant resources for research on coronavirus disease 2019 (COVID-19). Data harmonization is a key challenge in seamless use of multisite EHRs for COVID-19 research. We developed a COVID-19 application ontology in the national Accrual to Clinical Trials (ACT) network that enables harmonization of data elements that are critical to COVID-19 research. The ontology contains over 50 000 concepts in the domains of diagnosis, procedures, medications, and laboratory tests. In particular, it has computational phenotypes to characterize the course of illness and outcomes, derived terms, and harmonized value sets for severe acute respiratory syndrome coronavirus 2 laboratory tests. The ontology was deployed and validated on the ACT COVID-19 network that consists of 9 academic health centers with data on 14.5M patients. This ontology, which is freely available to the entire research community on GitHub at https://github.com/shyamvis/ACT-COVID-Ontology, will be useful for harmonizing EHRs for COVID-19 research beyond the ACT network.

3.
J Am Med Inform Assoc ; 28(7): 1411-1420, 2021 07 14.
Article in English | MEDLINE | ID: covidwho-1075534

ABSTRACT

OBJECTIVE: The Consortium for Clinical Characterization of COVID-19 by EHR (4CE) is an international collaboration addressing coronavirus disease 2019 (COVID-19) with federated analyses of electronic health record (EHR) data. We sought to develop and validate a computable phenotype for COVID-19 severity. MATERIALS AND METHODS: Twelve 4CE sites participated. First, we developed an EHR-based severity phenotype consisting of 6 code classes, and we validated it on patient hospitalization data from the 12 4CE clinical sites against the outcomes of intensive care unit (ICU) admission and/or death. We also piloted an alternative machine learning approach and compared selected predictors of severity with the 4CE phenotype at 1 site. RESULTS: The full 4CE severity phenotype had pooled sensitivity of 0.73 and specificity 0.83 for the combined outcome of ICU admission and/or death. The sensitivity of individual code categories for acuity had high variability-up to 0.65 across sites. At one pilot site, the expert-derived phenotype had mean area under the curve of 0.903 (95% confidence interval, 0.886-0.921), compared with an area under the curve of 0.956 (95% confidence interval, 0.952-0.959) for the machine learning approach. Billing codes were poor proxies of ICU admission, with as low as 49% precision and recall compared with chart review. DISCUSSION: We developed a severity phenotype using 6 code classes that proved resilient to coding variability across international institutions. In contrast, machine learning approaches may overfit hospital-specific orders. Manual chart review revealed discrepancies even in the gold-standard outcomes, possibly owing to heterogeneous pandemic conditions. CONCLUSIONS: We developed an EHR-based severity phenotype for COVID-19 in hospitalized patients and validated it at 12 international sites.


Subject(s)
COVID-19 , Electronic Health Records , Severity of Illness Index , COVID-19/classification , Hospitalization , Humans , Machine Learning , Prognosis , ROC Curve , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...