Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-308828

ABSTRACT

BACKGROUND: Despite SARS-CoV-2 immunizations have started in most countries, children are not currently included in the vaccination programs, thus it remains crucial to define their anti-SARS-CoV-2 immune response in order to minimize the risk for other epidemic waves. This study seeks to provide a description of the virology ad anti-SARS-CoV-2 immunity in children with distinct symptomatology. METHODS: Between March and July 2020, we recruited 15 SARS-CoV-2 asymptomatic (AS) and 51 symptomatic children (SY), stratified according to WHO clinical classification. We measured SARS-CoV-2 viral load using ddPCR and qPCR in longitudinally collected nasopharyngeal swabs samples. To define anti-SARS-CoV-2 antibodies we measured neutralization activity and total IgG load (Diasorin). We also evaluated antigen-specific B and CD8+T-cells, using a labelled S1+S2 protein and ICAM expression, respectively. Plasma protein profiling was performed with Olink. RESULTS: Virological profiling showed that AS had lower viral load at diagnosis (p=0.004) and faster virus clearance (p=0.0002) compared to SY. Anti-SARS CoV-2 humoral and cellular response did not appear to be associated with the presence of symptoms. AS and SY showed similar titers of SARS-CoV-2 IgG, levels of neutralizing activity, and frequency of Ag-specific B and CD8+T-cells. Whereas pro-inflammatory plasma protein profile was associated to symptomatology. CONCLUSION: We demonstrated the development of anti-SARS-CoV-2 humoral and cellular response with any regards to symptomatology, suggesting the ability of both SY and AS to contribute towards herd immunity. The virological profiling of AS suggested that they have lower virus load associated with faster virus clearance.

2.
EuropePMC; 2020.
Preprint in English | EuropePMC | ID: ppcovidwho-308827

ABSTRACT

As the global COVID-19 pandemic progresses and with the school reopening, it is paramount to gain knowledge on adaptive immunity to SARS-CoV-2 in children in order to define possible immunization strategies and reconsider pandemic control measures. We analyzed anti-SARS-CoV-2 antibodies (Ab) and their neutralizing activity (PRNT) in 42 COVID-19-infected children 7 days after symptoms onset. Individuals with specific humoral responses presented faster virus clearance, and lower viral load associated to a reduced in vitro infectivity. We demonstrated that the frequencies of SARS-CoV-2 specific CD4-CD40L+ T-cells and Spike specific B-cells were associated with the anti-SARS-CoV-2 Ab and the magnitude of neutralizing activity. The plasma proteome confirmed the association between cellular and humoral SARS-CoV-2 immunity, with PRNT+ patients showing higher viral signal transduction molecules (SLAMF1, CD244, CLEC4G). This work shed lights on cellular and humoral anti-SARS-CoV-2 responses in children which may drive future vaccination trials endpoints and quarantine measures policies.Funding: This work was made possible by support from Bambino Gesù Children’s Hospital ricerca corrente 2020 to NC and ricerca corrente 2019 to PP, by PENTA and by Fondazione Cassa di Risparmio di Padova e Rovigo, Progetti di Ricerca Covid-19 (ADR participant).Conflict of Interest: The authors declare no competing interests.Ethical Approval: Local ethical committee approved the study and written informed consent was obtained from all participants or legal guardians.

4.
Front Immunol ; 12: 727850, 2021.
Article in English | MEDLINE | ID: covidwho-1477821

ABSTRACT

Mass SARS-Cov-2 vaccination campaign represents the only strategy to defeat the global pandemic we are facing. Immunocompromised patients represent a vulnerable population at high risk of developing severe COVID-19 and thus should be prioritized in the vaccination programs and in the study of the vaccine efficacy. Nevertheless, most data on efficacy and safety of the available vaccines derive from trials conducted on healthy individuals; hence, studies on immunogenicity of SARS-CoV2 vaccines in such populations are deeply needed. Here, we perform an observational longitudinal study analyzing the humoral and cellular response following the BNT162b2 mRNA COVID-19 vaccine in a cohort of patients affected by inborn errors of immunity (IEI) compared to healthy controls (HC). We show that both IEI and HC groups experienced a significant increase in anti-SARS-CoV-2 Abs 1 week after the second scheduled dose as well as an overall statistically significant expansion of the Ag-specific CD4+CD40L+ T cells in both HC and IEI. Five IEI patients did not develop any specific CD4+CD40L+ T cellular response, with one of these patients unable to also mount any humoral response. These data raise immunologic concerns about using Ab response as a sole metric of protective immunity following vaccination for SARS-CoV-2. Taken together, these findings suggest that evaluation of vaccine-induced immunity in this subpopulation should also include quantification of Ag-specific T cells.


Subject(s)
Antibodies, Viral/blood , CD4-Positive T-Lymphocytes/immunology , COVID-19 Vaccines/immunology , Immunogenicity, Vaccine/immunology , Primary Immunodeficiency Diseases/immunology , SARS-CoV-2/immunology , Adolescent , Adult , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , CD4 Lymphocyte Count , COVID-19/prevention & control , Female , Humans , Immunity, Cellular/immunology , Immunity, Humoral/immunology , Immunocompromised Host/immunology , Longitudinal Studies , Male , Middle Aged , Vaccination , Young Adult
5.
Pediatr Allergy Immunol ; 32(8): 1833-1842, 2021 11.
Article in English | MEDLINE | ID: covidwho-1282025

ABSTRACT

BACKGROUND: Although SARS-CoV-2 immunizations have started in most countries, children are not currently included in the vaccination programs; thus, it remains crucial to define their anti-SARS-CoV-2 immune response in order to minimize the risk for other epidemic waves. This study sought to provide a description of the virology ad anti-SARS-CoV-2 immunity in children with distinct symptomatology. METHODS: Between March and July 2020, we recruited 15 SARS-CoV-2 asymptomatic (AS) and 51 symptomatic (SY) children, stratified according to WHO clinical classification. We measured SARS-CoV-2 viral load using ddPCR and qPCR in longitudinally collected nasopharyngeal swab samples. To define anti-SARS-CoV-2 antibodies, we measured neutralization activity and total IgG load (DiaSorin). We also evaluated antigen-specific B and CD8+T cells, using a labeled S1+S2 protein and ICAM expression, respectively. Plasma protein profiling was performed with Olink. RESULTS: Virological profiling showed that AS patients had lower viral load at diagnosis (p = .004) and faster virus clearance (p = .0002) compared with SY patients. Anti-SARS-CoV-2 humoral and cellular response did not appear to be associated with the presence of symptoms. AS and SY patients showed similar titers of SARS-CoV-2 IgG, levels of neutralizing activity, and frequency of Ag-specific B and CD8+ T cells, whereas pro-inflammatory plasma protein profile was found to be associated with symptomatology. CONCLUSION: We demonstrated the development of anti-SARS-CoV-2 humoral and cellular response with any regard to symptomatology, suggesting the ability of both SY and AS patients to contribute toward herd immunity. The virological profiling of AS patients suggested that they have lower virus load associated with faster virus clearance.


Subject(s)
COVID-19 , Antibodies, Viral/blood , B-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , COVID-19/immunology , Child , Humans , Immunoglobulin G/blood , SARS-CoV-2 , Serologic Tests
6.
Cell Rep ; 34(11): 108852, 2021 03 16.
Article in English | MEDLINE | ID: covidwho-1135278

ABSTRACT

As the global COVID-19 pandemic progresses, it is paramount to gain knowledge on adaptive immunity to SARS-CoV-2 in children to define immune correlates of protection upon immunization or infection. We analyzed anti-SARS-CoV-2 antibodies and their neutralizing activity (PRNT) in 66 COVID-19-infected children at 7 (±2) days after symptom onset. Individuals with specific humoral responses presented faster virus clearance and lower viral load associated with a reduced in vitro infectivity. We demonstrated that the frequencies of SARS-CoV-2-specific CD4+CD40L+ T cells and Spike-specific B cells were associated with the anti-SARS-CoV-2 antibodies and the magnitude of neutralizing activity. The plasma proteome confirmed the association between cellular and humoral SARS-CoV-2 immunity, and PRNT+ patients show higher viral signal transduction molecules (SLAMF1, CD244, CLEC4G). This work sheds lights on cellular and humoral anti-SARS-CoV-2 responses in children, which may drive future vaccination trial endpoints and quarantine measures policies.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/immunology , Adaptive Immunity/immunology , B-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/immunology , COVID-19/virology , Child , Humans , Immunity, Humoral/immunology , Proteome/immunology , SARS-CoV-2/immunology , Signal Transduction/immunology , Viral Load/immunology
7.
Ital J Pediatr ; 46(1): 180, 2020 Dec 07.
Article in English | MEDLINE | ID: covidwho-963305

ABSTRACT

BACKGROUND: Lately, one of the major clinical and public health issues has been represented by Coronavirus disease of 2019 (COVID-19) during pregnancy and the risk of transmission of the infection from mother to child. Debate on perinatal management and postnatal care is still ongoing, principally questioning the option of the joint management of mother and child after birth and the safety of breastfeeding. According to the available reports, neonatal COVID-19 appears to have a horizontal transmission and seems to be paucisymptomatic or asymptomatic, compared to older age groups. The aim of this work is to describe a cluster of neonatal COVID-19 and discuss our experience, with reference to current evidence on postnatal care and perinatal management. METHODS: This is a retrospective observational case series of five mother-child dyads, who attended the Labor and Delivery Unit of a first-level hospital in Italy, in March 2020. Descriptive statistics for continuous variables consisted of number of observations, mean and the range of the minimum and maximum values. RESULTS: Five women and four neonates tested positive for Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). In one case, the mother-child dyad was separated and the neonate remained negative on two consecutive tests. Two positive neonates developed symptoms, with a predominant involvement of the gastrointestinal tract. Blood tests were unremarkable, except for a single patient who developed mild neutropenia. No complications occurred. CONCLUSIONS: We agree that the decision on whether or not to separate a positive/suspected mother from her child should be made on an individual basis, taking into account the parent's will, clinical condition, hospital logistics and the local epidemiological situation. In conformity with literature, in our study, affected neonates were asymptomatic or paucisymptomatic. Despite these reassuring findings, a few cases of severe presentation in the neonatal population have been reported. Therefore, we agree on encouraging clinicians to monitor the neonates with a suspected or confirmed infection.


Subject(s)
COVID-19/therapy , COVID-19/transmission , Disease Transmission, Infectious , Mothers , Postnatal Care , Adult , COVID-19/epidemiology , COVID-19 Testing , Female , Humans , Infant, Newborn , Italy/epidemiology , Male , Pandemics , Retrospective Studies , SARS-CoV-2
9.
Cell ; 183(4): 968-981.e7, 2020 11 12.
Article in English | MEDLINE | ID: covidwho-746088

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is typically very mild and often asymptomatic in children. A complication is the rare multisystem inflammatory syndrome in children (MIS-C) associated with COVID-19, presenting 4-6 weeks after infection as high fever, organ dysfunction, and strongly elevated markers of inflammation. The pathogenesis is unclear but has overlapping features with Kawasaki disease suggestive of vasculitis and a likely autoimmune etiology. We apply systems-level analyses of blood immune cells, cytokines, and autoantibodies in healthy children, children with Kawasaki disease enrolled prior to COVID-19, children infected with SARS-CoV-2, and children presenting with MIS-C. We find that the inflammatory response in MIS-C differs from the cytokine storm of severe acute COVID-19, shares several features with Kawasaki disease, but also differs from this condition with respect to T cell subsets, interleukin (IL)-17A, and biomarkers associated with arterial damage. Finally, autoantibody profiling suggests multiple autoantibodies that could be involved in the pathogenesis of MIS-C.


Subject(s)
Coronavirus Infections/pathology , Pneumonia, Viral/pathology , Systemic Inflammatory Response Syndrome/pathology , Autoantibodies/blood , Betacoronavirus/isolation & purification , COVID-19 , Child , Child, Preschool , Coronavirus Infections/complications , Coronavirus Infections/virology , Cytokines/metabolism , Female , Humans , Immunity, Humoral , Infant , Male , Mucocutaneous Lymph Node Syndrome/complications , Mucocutaneous Lymph Node Syndrome/immunology , Mucocutaneous Lymph Node Syndrome/pathology , Pandemics , Pneumonia, Viral/complications , Pneumonia, Viral/virology , Principal Component Analysis , Proteome/analysis , SARS-CoV-2 , Severity of Illness Index , Systemic Inflammatory Response Syndrome/etiology , Systemic Inflammatory Response Syndrome/immunology , T-Lymphocyte Subsets/cytology , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL