Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Add filters

Document Type
Year range
Med Sci (Basel) ; 9(3)2021 07 30.
Article in English | MEDLINE | ID: covidwho-1335151


The Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is a new pathogen agent causing the coronavirus infectious disease (COVID-19). This novel virus originated the most challenging pandemic in this century, causing economic and social upheaval internationally. The extreme infectiousness and high mortality rates incentivized the development of vaccines to control this pandemic to prevent further morbidity and mortality. This international scenario led academic scientists, industries, and governments to work and collaborate strongly to make a portfolio of vaccines available at an unprecedented pace. Indeed, the robust collaboration between public systems and private companies led to resolutive actions for accelerating therapeutic interventions and vaccines mechanism. These strategies contributed to rapidly identifying safe and effective vaccines as quickly and efficiently as possible. Preclinical research employed animal models to develop vaccines that induce protective and long-lived immune responses. A spectrum of vaccines is worldwide under investigation in various preclinical and clinical studies to develop both individual protection and safe development of population-level herd immunity. Companies employed and developed different technological approaches for vaccines production, including inactivated vaccines, live-attenuated, non-replicating viral vector vaccines, as well as acid nucleic-based vaccines. In this view, the present narrative review provides an overview of current vaccination strategies, taking into account both preclinical studies and clinical trials in humans. Furthermore, to better understand immunization, animal models on SARS-CoV-2 pathogenesis are also briefly discussed.

COVID-19 Vaccines/therapeutic use , COVID-19/prevention & control , Pandemics/prevention & control , Animals , COVID-19 Vaccines/classification , Humans , Models, Animal , Randomized Controlled Trials as Topic , Vaccines, Attenuated , Vaccines, DNA
Front Pharmacol ; 12: 614586, 2021.
Article in English | MEDLINE | ID: covidwho-1191699


Introduction: The World Health Organization declared the COVID-19 pandemic in March 2020. COVID-19 still represents a worldwide health emergency, which causesa severe disease that has led to the death of many patients. The pathophysiological mechanism of SARS-CoV-2 determining the tissue damage is not clear and autopsycan be auseful tool to improve the knowledge of this infection and, thus, it can help achieve a timely diagnosis and develop an appropriate therapy. This is an overview of the main post-mortem findings reporting data on the infection effects on several organs. Methods: A systematic literature search was conducted in the PubMed database searching for articles from 1 January to August 31, 2020. Thearticles were selected identifying words/concepts in the titles and/or abstracts that indicated the analysis of the morphological/pathological tissue injuries related to SARS-CoV-2 disease by several investigations. Results: A total of 63 articles were selected. The main investigated tissue was the lung showing a diffuse alveolar damage (DAD) frequently associated with pulmonary thrombotic microangiopathy. Inflammatory findings and vascular damage were observed in other organs such as heart, liver, kidney, brain, spleen, skin and adrenal gland. The immunohistochemical analysis showed tissue inflammatory cells infiltrates. The virus presence was detected by several investigations such as RT-PCR, immunohistochemistry and electron microscope, showing the effect ofSARS-CoV-2not exclusively in the lung. Discussion: The evidence emerging from this review highlighted the importance of autopsy to provide a fundamental base in the process of understanding the consequences ofSARS-CoV-2 infection. COVID-19 is strictly related to a hyper inflammatory state that seems to start with DAD and immuno-thrombotic microangiopathy. Massive activation of the immune system and microvascular damage might also be responsible for indirect damage to other organs, even if the direct effect of the virus on these tissues cannot be excluded.