Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.03.07.22271833

ABSTRACT

Pulmonary inflammation drives critical illness in Covid-19, creating a clinically homogeneous extreme phenotype, which we have previously shown to be highly efficient for discovery of genetic associations. Despite the advanced stage of illness, we have found that immunomodulatory therapies have strong beneficial effects in this group. Further genetic discoveries may identify additional therapeutic targets to modulate severe disease. In this new data release from the GenOMICC (Genetics Of Mortality in Critical Care) study we include new microarray genotyping data from additional critically-ill cases in the UK and Brazil, together with cohorts of severe Covid-19 from the ISARIC4C and SCOURGE studies, and meta-analysis with previously-reported data. We find an additional \numconvincingnew new genetic associations. Many are in potentially druggable targets, in inflammatory signalling (JAK1, PDE4A), monocyte-macrophage differentiation (CSF2), immunometabolism (SLC2A5, AK5), and host factors required for viral entry and replication (TMPRSS2, RAB2A). As with our previous work, these results provide tractable therapeutic targets for modulation of harmful host-mediated inflammation in Covid-19.


Subject(s)
COVID-19 , Pneumonia , Inflammation
2.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.09.02.21262965

ABSTRACT

Critical illness in COVID-19 is caused by inflammatory lung injury, mediated by the host immune system. We and others have shown that host genetic variation influences the development of illness requiring critical care1 or hospitalisation2;3;4 following SARS-Co-V2 infection. The GenOMICC (Genetics of Mortality in Critical Care) study is designed to compare genetic variants in critically-ill cases with population controls in order to find underlying disease mechanisms. Here, we use whole genome sequencing and statistical fine mapping in 7,491 critically-ill cases compared with 48,400 population controls to discover and replicate 22 independent variants that significantly predispose to life-threatening COVID-19. We identify 15 new independent associations with critical COVID-19, including variants within genes involved in interferon signalling (IL10RB, PLSCR1), leucocyte differentiation (BCL11A), and blood type antigen secretor status (FUT2). Using transcriptome-wide association and colocalisation to infer the effect of gene expression on disease severity, we find evidence implicating expression of multiple genes, including reduced expression of a membrane flippase (ATP11A), and increased mucin expression (MUC1), in critical disease. We show that comparison between critically-ill cases and population controls is highly efficient for genetic association analysis and enables detection of therapeutically-relevant mechanisms of disease. Therapeutic predictions arising from these findings require testing in clinical trials.


Subject(s)
Critical Illness , Nijmegen Breakage Syndrome , Lung Diseases , COVID-19
3.
ssrn; 2021.
Preprint in English | PREPRINT-SSRN | ID: ppzbmed-10.2139.ssrn.3854606

ABSTRACT

Background: Tissue inflammation in fatal COVID-19 is concentrated in the lung and spleen. Anti-inflammatory therapy reduces mortality but knowledge on the host response at the level of inflamed tissues is incomplete. Methods: We performed targeted proteomic analysis of pulmonary and splenic tissues from 13 fatal cases of COVID-19 that underwent rapid autopsy, and compared to control tissues from cancer resection (lung) and deceased organ donors (spleen). Viral RNA presence was determined by multiplex PCR, and protein was isolated from tissue by phenol extraction. Targeted multiplex immunoassay panels were used for protein detection and quantification. Findings: Pulmonary proteins with increased abundance in COVID-19 included the monocyte/macrophage chemoattractant MCP-3, antiviral TRIM21 and pro-thrombotic TYMP. The lung injury markers OSM and EN-RAGE/S100A12 were highly correlated and associated with tissue inflammation severity. Unsupervised clustering of lung proteomes clearly defined two COVID-19 clusters; these differed by viral presence, tissue inflammation severity and illness duration and were annotated ‘early viral’ and ‘late inflammatory’ groups. In the spleen, lymphocyte chemotactic factors and CD8A were decreased in COVID-19, with pro-apoptotic factors, B-cell signalling components and macrophage colony stimulating factor (CSF-1) all increased. To contextualise our findings, we cross-referenced an existing meta-analysis of host factors in COVID-19 (MAIC). Overlap with a substantial sub-set of factors (including DDX58, OSM, TYMP, IL-18, MCP-3 and CSF-1) was found, with numerous additional proteins also identified by our study. Interpretation: Tissue proteomes from fatal COVID-19 identify disease subsets and dissect host immunopathologic signatures. In doing so, this may afford unique opportunities for therapeutic intervention.Funding Information: This work was funded by UK Research and Innovation (UKRI) (Coronavirus Disease [COVID-19] Rapid Response Initiative; MR/V028790/1 to C.D.L., D.A.D., and J.A.H.), LifeArc (through the University of Edinburgh STOPCOVID funding award, to K.D, D.A.D, C.D.L), The Chief Scientist Office (RARC-19 Funding Call, ‘Inflammation in Covid-19: Exploration of Critical Aspects of Pathogenesis; COV/EDI/20/10’ to D.A.D, C.D.L, C.D.R, J.K.B and D.J.H), and Medical Research Scotland (CVG-1722-2020 to DAD, CDL, CDR, JKB, and DJH). C.D.L is funded by a Wellcome Trust Clinical Career Development Fellowship (206566/Z/17/Z). J.K.B. and C.D.R. are supported by the Medical Research Council (grant MC_PC_19059) as part of the ISARIC Coronavirus Clinical Characterisation Consortium (ISARIC-4C). C.D.R. is supported by an Edinburgh Clinical Academic Track (ECAT)/Wellcome Trust PhD Training Fellowship for Clinicians award (214178/Z/18/Z). J.A.H. is supported by the U.S. Food and Drug Administration (contract 75F40120C00085, Characterization of severe coronavirus infection in humans and model systems for medical countermeasure development and evaluation’). G.C.O is funded by an NRS Clinician award. N.N.G. is funded by a Pathological Society Award. A.R.A. is supported by a Cancer Research UK Clinician Scientist Fellowship award (A24867).Declaration of Interests: All authors have declared that no competing interests exist.Ethics Approval Statement: Written informed consent to undertake postmortem examinations was obtained from next-of-kin. Ethical approval was granted by the East of Scotland Research Ethics Service (16/ES/0084).


Subject(s)
Neoplasms , Coronavirus Infections , Pyruvate Carboxylase Deficiency Disease , Learning Disabilities , Lung Injury , COVID-19
4.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.05.05.21256681

ABSTRACT

Cell autonomous antiviral defenses can inhibit the replication of viruses and reduce transmission and disease severity. To better understand the antiviral response to SARS-CoV-2, we used interferon-stimulated gene (ISG) expression screening to reveal that OAS1, through RNase L, potently inhibits SARS-CoV-2. We show that while some people can express a prenylated OAS1 variant, that is membrane-associated and blocks SARS-CoV-2 infection, other people express a cytosolic, nonprenylated OAS1 variant which does not detect SARS-CoV-2 (determined by the splice-acceptor SNP Rs10774671). Alleles encoding nonprenylated OAS1 predominate except in people of African descent. Importantly, in hospitalized patients, expression of prenylated OAS1 was associated with protection from severe COVID-19, suggesting this antiviral defense is a major component of a protective antiviral response. Remarkably, approximately 55 million years ago, retrotransposition ablated the OAS1 prenylation signal in horseshoe bats (the presumed source of SARS-CoV-2). Thus, SARS-CoV-2 never had to adapt to evade this defense. As prenylated OAS1 is widespread in animals, the billions of people that lack a prenylated OAS1 could make humans particularly vulnerable to the spillover of coronaviruses from horseshoe bats.


Subject(s)
COVID-19
5.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.09.24.20200048

ABSTRACT

The subset of patients who develop critical illness in Covid-19 have extensive inflammation affecting the lungs and are strikingly different from other patients: immunosuppressive therapy benefits critically-ill patients, but may harm some non-critical cases. Since susceptibility to life-threatening infections and immune-mediated diseases are both strongly heritable traits, we reasoned that host genetic variation may identify mechanistic targets for therapeutic development in Covid-19. GenOMICC (Genetics Of Mortality In Critical Care, genomicc.org) is a global collaborative study to understand the genetic basis of critical illness. Here we report the results of a genome-wide association study (GWAS) in 2790 critically-ill Covid-19 patients from 208 UK intensive care units (ICUs), representing >95% of all ICU beds. Random controls were drawn from three distinct UK population studies. We identify and replicate several novel genome-wide significant associations including variants chr19p13.3 (rs2109069, P = 3.98 x 10-12), within the gene encoding dipeptidyl peptidase 9 (DPP9), and at chr21q22.1 (rs2236757, P = 4.99 x 10-8) in the interferon receptor IFNAR2. Consistent with our focus on extreme disease in younger patients with less comorbidity, we detect a stronger signal at the known 3p21.31 locus than previous studies (rs73064425, P = 1.2 x 10-27). We identify potential targets for repurposing of existing licensed medications. Using Mendelian randomisation we found evidence in support of a causal link from low expression of IFNAR2, and high expression of TYK2, to life-threatening disease. Transcriptome-wide association in lung tissue revealed that high expression of the monocyte/macrophage chemotactic receptor CCR2 is associated with severe Covid-19. We detected genome-wide significant gene-level associations for genes with central roles in viral restriction (OAS1, OAS2, OAS3). These results identify specific loci associated with life-threatening disease, and potential targets for host-directed therapies. Randomised clinical trials will be necessary before any change to clinical practice.


Subject(s)
Critical Illness , Inflammation , COVID-19
6.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.08.27.20182238

ABSTRACT

An increasing body of literature describes the role of host factors in COVID-19 pathogenesis. There is a need to combine diverse, multi-omic data in order to evaluate and substantiate the most robust evidence and inform development of future therapies. We conducted a systematic review of experiments identifying host factors involved in human betacoronavirus infection (SARS-CoV-2, SARS-CoV, MERS-CoV, seasonal coronaviruses). Gene lists from these diverse sources were integrated using Meta-Analysis by Information Content (MAIC). This previously described algorithm uses data-driven gene list weightings to produce a comprehensive ranked list of implicated host genes. 5,418 genes implicated in human betacoronavirus infection were identified from 32 datasets. The top ranked gene was *PPIA*, encoding cyclophilin A. Pharmacological inhibition with cyclosporine in vitro exerts antiviral activity against several coronaviruses including SARS-CoV. Other highly-ranked genes included proposed prognostic factors (*CXCL10*, *CD4*, *CD3E*) and investigational therapeutic targets (*IL1A*) for COVID-19, but also previously overlooked genes with potential as therapeutic targets. Gene rankings also inform the interpretation of COVID-19 GWAS results, implicating *FYCO1* over other nearby genes in a disease-associated locus on chromosome 3. Pathways enriched in gene rankings included T-cell receptor signalling, protein processing, and viral infections. We identified limited overlap of our gene list with host genes implicated in ARDS (innate immune and inflammation genes) and Influenza A virus infection (RNA-binding and ribosome-associated genes). We will continue to update this dynamic ranked list of host genes as the field develops, as a resource to inform and prioritise future studies. Updated results are available at https://baillielab.net/maic/covid19.


Subject(s)
Infections , Virus Diseases , Severe Acute Respiratory Syndrome , Tumor Virus Infections , Inflammation , COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL