ABSTRACT
There are still conflicting data on the virological effects of the SARS-CoV-2 direct antivirals used in clinical practice, in spite of the documented clinical efficacy. The aim of this monocentric retrospective study was to compare virologic and laboratory data of patients admitted due to SARS-CoV-2 infection from March to December 2020 treated with either remdesivir (R), a protease inhibitor (lopinavir or darunavir/ritonavir (PI)) or no direct antiviral drugs (NT). Viral load variation was indirectly assessed through PCR cycle threshold (Ct) values on the nasopharyngeal swab, analyzing the results from swabs obtained at ward admission and 7 (±2) days later. Overall, 253 patients were included: patients in the R group were significantly older, more frequently males with a significantly higher percentage of severe COVID-19, requiring more often intensive care admission, compared to the other groups. Ct variation over time did not differ amongst the three treatment groups and did not seem to be influenced by corticosteroid use, even after normalization of the treatment groups for disease severity. Non-survivors had lower Ct on admission and showed a significantly slower viral clearance compared to survivors. CD4 T-lymphocytes absolute count assessed at ward admission correlated with a reduced Ct variation over time. In conclusion, viral clearance appears to be slower in COVID-19 non-survivors, while it seems not to be influenced by the antiviral treatment received.
Subject(s)
Acquired Immunodeficiency Syndrome , Anti-HIV Agents , HIV Infections , Hypertriglyceridemia , Humans , Lamivudine/adverse effects , HIV Infections/drug therapy , Fumarates/therapeutic use , Acquired Immunodeficiency Syndrome/drug therapy , Anti-HIV Agents/adverse effects , Tenofovir/adverse effects , Hypertriglyceridemia/chemically induced , Hypertriglyceridemia/drug therapy , Emtricitabine/therapeutic useABSTRACT
SARS-CoV-2 is constantly evolving, leading to new variants. We analysed data from 4400 SARS-CoV-2-positive samples in order to pursue epidemiological variant surveillance and to evaluate their impact on public health in Italy in the period of April-December 2021. The main circulating strain (76.2%) was the Delta variant, followed by the Alpha (13.3%), the Omicron (5.3%), and the Gamma variants (2.9%). The B.1.1 lineages, Eta, Beta, Iota, Mu, and Kappa variants, represented around 1% of cases. There were 48.2% of subjects who had not been vaccinated, and they had a lower median age compared to the vaccinated subjects (47 vs. 61 years). An increasing number of infections in the vaccinated subjects were observed over time, with the highest proportion in November (85.2%). The variants correlated with clinical status; the largest proportion of symptomatic patients (59.6%) was observed with the Delta variant, while subjects harbouring the Gamma variant showed the highest proportion of asymptomatic infection (21.6%), albeit also deaths (5.4%). The Omicron variant was only found in the vaccinated subjects, of which 47% had been hospitalised. The diffusivity and pathogenicity associated with the different SARS-CoV-2 variants are likely to have relevant public health implications, both at the national and international levels. Our study provides data on the rapid changes in the epidemiological landscape of the SARS-CoV-2 variants in Italy.
Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19/epidemiology , Italy/epidemiologyABSTRACT
Background: Vaccination campaign to contrast the spread of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has raised the issue of vaccine immunogenicity in special populations such as people with multiple sclerosis (PwMS) on highly effective disease modifying treatments (DMTs). While humoral responses to SARS-CoV-2 mRNA vaccines have been well characterized in the general population and in PwMS, very little is known about cell-mediated responses in conferring protection from SARS-CoV-2 infection and severe coronavirus disease-2019 (COVID-19). Methods: PwMS on ocrelizumab, fingolimod or natalizumab, vaccinated with two doses of mRNABNT162b2 (Comirnaty®) vaccine were enrolled. Anti-Spike (S) and anti-Nucleoprotein (N) antibody titers, IFN-gamma production upon S and N peptide libraries stimulation, peripheral blood lymphocyte absolute counts were assessed after at least 1 month and within 4 months from vaccine second dose administration. A group of age and sex matched healthy donors (HD) were included as reference group. Statistical analysis was performed using GraphPad Prism 8.2.1. Results: Thirty PwMS and 9 HDs were enrolled. All the patients were negative for anti-N antibody detection, nor reported previous symptoms of COVID-19. Peripheral blood lymphocyte counts were assessed in PwMS showing: (i) reduction of circulating B-lymphocytes in PwMS on ocrelizumab; (ii) reduction of peripheral blood B- and T-lymphocyte absolute counts in PwMS on fingolimod and (iii) normal B- and T-lymphocyte absolute counts with an increase in circulating CD16+CD56+ NK-cells in PwMS on natalizumab. Three patterns of immunological responses were identified in PwMS. In patients on ocrelizumab, anti-S antibody were lacking or reduced, while T-cell responses were normal. In patients on fingolimod both anti-S titers and T-cell mediated responses were impaired. In patients on natalizumab both anti-S titers and T-cell responses were present and comparable to those observed in HD. Conclusions: The evaluation of T-cell responses, anti-S titers and peripheral blood lymphocyte absolute count in PwMS on DMTs can help to better characterize the immunological response after SARS-CoV-2 vaccination. The evaluation of T-cell responses in longitudinal cohorts of PwMS will help to clarify their protective role in preventing SARS-CoV-2 infection and severe COVID-19. The correlation between DMT treatment and immunological responses to SARS-CoV-2 vaccines could help to better evaluate vaccination strategies in PwMS.
Subject(s)
B-Lymphocytes/immunology , BNT162 Vaccine/administration & dosage , COVID-19 , Multiple Sclerosis/immunology , SARS-CoV-2/immunology , T-Lymphocytes/immunology , Vaccination , Adult , BNT162 Vaccine/immunology , COVID-19/immunology , COVID-19/prevention & control , Female , Humans , Male , Middle Aged , Multiple Sclerosis/therapyABSTRACT
Background: SARS-CoV-2 pandemic affected tuberculosis (TB) management. This Italian nationwide survey assessed COVID-19 impact on TB care and outcomes. Materials and methods: Twenty-one hospitals or referral centres fulfilled an online survey. Primary objective was to describe clinical features, outcomes and retention in care in subjects with latent TB infection (LTBI) or disease over the first wave of COVID-19 pandemic. Secondary objectives were the assessment of risk factors, co-morbidities, diagnostics, radiological findings, and outcomes of COVID-19 in the study population. Results: 254 patients with LTBI or active TB were included. In co-infected (SARS-CoV-2, LTBI/TB) patients, recovery occurred in 29/32 (90.6%) cases, death in one case. High retention in care was preserved. Conclusion: in our cohort, outcomes did not seem to be adversely conditioned by incident COVID-19.
ABSTRACT
Lymphopenia has been consistently reported as associated with severe coronavirus disease 2019 (COVID-19). Several studies have described a profound decline in all T-cell subtypes in hospitalized patients with severe and critical COVID-19. The aim of this study was to assess the role of T-lymphocyte subset absolute counts measured at ward admission in predicting 30-day mortality in COVID-19 hospitalized patients, validating a new prognostic score, the T-Lymphocyte Subset Index (TLSI, range 0-2), based on the number of T-cell subset (CD4+ and CD8+) absolute counts that are below prespecified cutoffs. These cutoff values derive from a previously published work of our research group at Policlinico Tor Vergata, Rome, Italy: CD3+CD4+ < 369 cells/µL, CD3+CD8+ < 194 cells/µL. In the present single-center retrospective study, T-cell subsets were assessed on admission to the infectious diseases ward. Statistical analysis was performed using JASP (Version 0.16.2. JASP Team, 2022, Amsterdam, The Netherlands) and Prism8 (version 8.2.1. GraphPad Software, San Diego, CA, USA). Clinical and laboratory parameters of 296 adult patients hospitalized because of COVID-19 were analyzed. The overall mortality rate was 22.3% (66/296). Survivors (S) had a statistically significant lower TLSI score compared to non-survivors (NS) (p < 0.001). Patients with increasing TLSI scores had proportionally higher rates of 30-day mortality (p < 0.0001). In the multivariable logistic analysis, the TLSI was an independent predictor of in-hospital 30-day mortality (OR: 1.893, p = 0.003). Survival analysis showed that patients with a TLSI > 0 had an increased risk of death compared to patients with a TLSI = 0 (hazard ratio: 2.83, p < 0.0001). The TLSI was confirmed as an early and independent predictor of COVID-19 in-hospital 30-day mortality.
ABSTRACT
Neurofilament light chain (NfL) is a specific biomarker of neuro-axonal damage. Matrix metalloproteinases (MMPs) are zinc-dependent enzymes involved in blood-brain barrier (BBB) integrity. We explored neuro-axonal damage, alteration of BBB integrity and SARS-CoV-2 RNA presence in COVID-19 patients with severe neurological symptoms (neuro-COVID) as well as neuro-axonal damage in COVID-19 patients without severe neurological symptoms according to disease severity and after recovery, comparing the obtained findings with healthy donors (HD). Overall, COVID-19 patients (n = 55) showed higher plasma NfL levels compared to HD (n = 31) (p < 0.0001), especially those who developed ARDS (n = 28) (p = 0.0005). After recovery, plasma NfL levels were still higher in ARDS patients compared to HD (p = 0.0037). In neuro-COVID patients (n = 12), higher CSF and plasma NfL, and CSF MMP-2 levels in ARDS than non-ARDS group were observed (p = 0.0357, p = 0.0346 and p = 0.0303, respectively). SARS-CoV-2 RNA was detected in four CSF and two plasma samples. SARS-CoV-2 RNA detection was not associated to increased CSF NfL and MMP levels. During COVID-19, ARDS could be associated to CNS damage and alteration of BBB integrity in the absence of SARS-CoV-2 RNA detection in CSF or blood. CNS damage was still detectable after discharge in blood of COVID-19 patients who developed ARDS during hospitalization.
Subject(s)
Blood-Brain Barrier , COVID-19 , Axons , Humans , RNA, Viral , SARS-CoV-2Subject(s)
COVID-19 , Latent Tuberculosis , Humans , Interferon-gamma , COVID-19/diagnosis , Interferon-gamma Release Tests , Tuberculin Test , Inflammation , Lymphocyte CountABSTRACT
BACKGROUND: to evaluate whether prior SARS-CoV-2 infection affects side effects and specific antibody production after vaccination with BNT162b2. METHODS: We included 1106 health care workers vaccinated with BNT162b2. We assessed whether prior SARS-CoV-2 infection affects the number and type of side effects and performed a nested case-control analysis comparing plasma levels of specific IgG titers between SARS-CoV-2-naïve and previously infected subjects after the first and the second vaccine doses. RESULTS: After the first dose, SARS-CoV-2-naïve subjects experienced side effects more often than SARS-CoV-2 naïve subjects. Individuals with prior SARS-CoV-2 infection more often reported pain at the injection site, weakness, and fever than SARS-CoV-2-naïve subjects. After the second dose, the frequency of side effects was similar in the two groups. All subjects with prior SARS-CoV-2 infection developed either a high (>100 AU/mL) or intermediate (10-100 AU/mL) antibody titer. Among SARS-CoV-2-naïve subjects, the majority developed an intermediate titer. After the second dose, a high (>2000 AU/mL) antibody titer was more common among subjects with prior SARS-CoV-2 infection. CONCLUSIONS: vaccine-related side effects and a higher anti-SARS-CoV-2-RBD IgG titer were more common in subjects with previous infection than in SARS-CoV-2-naïve after the first, but not after the second dose of the BNT162b2 vaccine.
ABSTRACT
We assessed SARS-CoV-2-specific CD4+ and CD8+ T cell responses in samples from 89 acute COVID-19 patients, utilizing blood samples collected during the first wave of COVID-19 in Italy. The goal of the study was to examine correlations between SARS-CoV-2-specific T cell responses in the early phase comparing mild, moderate, or severe COVID-19 disease outcomes. T cell responses to the spike (S) and non-S proteins were measured in a combined activation-induced marker (AIM) and intracellular cytokine staining (ICS) assay. Early CD4+ T cell responses to SARS-CoV-2 S correlated with milder disease by both AIM and IFNγ ICS readouts. The correlation of S-specific CD4+ T cell responses with milder disease severity was most striking within the first two weeks of symptom onset compared to later time points. Furthermore, donors with milder disease were associated with polyantigenic CD4+ T cell responses that recognized more prominently non-S proteins in addition to S, while severe acute COVID-19 was characterized by lower magnitudes of CD4+ T cell responses and a narrower repertoire. In conclusion, this study highlights that both the magnitude and breadth of early SARS-CoV-2-specific CD4+ T cell responses correlated with milder disease outcomes in acute COVID-19 patients.
Subject(s)
COVID-19 , CD4-Positive T-Lymphocytes , CD8-Positive T-Lymphocytes , Humans , Italy , SARS-CoV-2ABSTRACT
The aims of this study were to characterize new SARS-CoV-2 genomes sampled all over Italy and to reconstruct the origin and the evolutionary dynamics in Italy and Europe between February and June 2020. The cluster analysis showed only small clusters including < 80 Italian isolates, while most of the Italian strains were intermixed in the whole tree. Pure Italian clusters were observed mainly after the lockdown and distancing measures were adopted. Lineage B and B.1 spread between late January and early February 2020, from China to Veneto and Lombardy, respectively. Lineage B.1.1 (20B) most probably evolved within Italy and spread from central to south Italian regions, and to European countries. The lineage B.1.1.1 (20D) developed most probably in other European countries entering Italy only in the second half of March and remained localized in Piedmont until June 2020. In conclusion, within the limitations of phylogeographical reconstruction, the estimated ancestral scenario suggests an important role of China and Italy in the widespread diffusion of the D614G variant in Europe in the early phase of the pandemic and more dispersed exchanges involving several European countries from the second half of March 2020.
Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , Communicable Disease Control , Europe/epidemiology , Genome, Viral/genetics , Humans , Italy/epidemiology , Phylogeography , SARS-CoV-2/geneticsABSTRACT
Increased rates of indeterminate QuantiFERON-TB Gold Plus Assay (QFT-Plus) were demonstrated in patients hospitalized with Coronavirus Disease (COVID)-19. We aimed to define the prevalence and characteristics of hospitalized COVID-19 patients with indeterminate QFT-Plus. A retrospective study was performed including hospitalized COVID-19 patients, stratified in survivors and non-survivors, non-severe and severe according to the maximal oxygen supply required. Statistical analysis was performed using JASP ver0.14.1 and GraphPad Prism ver8.2.1. A total of 420 patients were included, median age: 65 years, males: 66.4%. The QFT-Plus was indeterminate in 22.1% of patients. Increased rate of indeterminate QFT-Plus was found in non-survivors (p = 0.013) and in severe COVID-19 patients (p < 0.001). Considering the Mitogen-Nil condition of the QFT-Plus, an impaired production of interferon-gamma (IFN-γ) was found in non-survivors (p < 0.001) and in severe COVID-19 patients (p < 0.001). A positive correlation between IFN-γ levels in the Mitogen-Nil condition and the absolute counts of CD3+ (p < 0.001), CD4+ (p < 0.001), and CD8+ (p < 0.001) T-lymphocytes was found. At the multivariable analysis, CD3+ T-cell absolute counts and CD4/CD8 ratio were confirmed as independent predictors of indeterminate results at the QFT-Plus. Our study confirmed the increased rate of indeterminate QFT-Plus in COVID-19 patients, mainly depending on the peripheral blood T-lymphocyte depletion found in the most severe cases.
ABSTRACT
BACKGROUND: Sialoadhesin (CD169) has been found to be overexpressed in the blood of COVID-19 patients and identified as a biomarker in early disease. We analyzed CD169 in the blood cells of COVID-19 patients to assess its role as a predictive marker of disease progression and clinical outcomes. METHODS: The ratio of the median fluorescence intensity of CD169 between monocytes and lymphocytes (CD169 RMFI) was analyzed by flow cytometry in blood samples of COVID-19 patients (COV) and healthy donors (HDs) and correlated with immunophenotyping, inflammatory markers, cytokine mRNA expression, pulmonary involvement, and disease progression. RESULTS: CD169 RMFI was high in COV but not in HDs, and it correlated with CD8 T-cell senescence and exhaustion markers, as well as with B-cell maturation and differentiation in COV. CD169 RMFI correlated with blood cytokine mRNA levels, inflammatory markers, and pneumonia severity in patients who were untreated at sampling, and was associated with the respiratory outcome throughout hospitalization. Finally, we also report the first evidence of the specific ability of the spike protein of SARS-CoV-2 to trigger CD169 RMFI in a dose-dependent manner in parallel with IL-6 and IL-10 gene transcription in HD PBMCs stimulated in vitro. CONCLUSION: CD169 is induced by the spike protein and should be considered as an early biomarker for evaluating immune dysfunction and respiratory outcomes in COVID-19 patients.
ABSTRACT
Lactoferrin (Lf), a multifunctional cationic glycoprotein synthesized by exocrine glands and neutrophils, possesses an in vitro antiviral activity against SARS-CoV-2. Thus, we conducted an in vivo preliminary study to investigate the antiviral effect of oral and intranasal liposomal bovine Lf (bLf) in asymptomatic and mild-to-moderate COVID-19 patients. From April 2020 to June 2020, a total of 92 mild-to-moderate (67/92) and asymptomatic (25/92) COVID-19 patients were recruited and divided into three groups. Thirty-two patients (14 hospitalized and 18 in home-based isolation) received only oral and intranasal liposomal bLf; 32 hospitalized patients were treated only with standard of care (SOC) treatment; and 28, in home-based isolation, did not take any medication. Furthermore, 32 COVID-19 negative, untreated, healthy subjects were added for ancillary analysis. Liposomal bLf-treated COVID-19 patients obtained an earlier and significant (p < 0.0001) SARS-CoV-2 RNA negative conversion compared to the SOC-treated and untreated COVID-19 patients (14.25 vs. 27.13 vs. 32.61 days, respectively). Liposomal bLf-treated COVID-19 patients showed fast clinical symptoms recovery compared to the SOC-treated COVID-19 patients. In bLf-treated patients, a significant decrease in serum ferritin, IL-6, and D-dimers levels was observed. No adverse events were reported. These observations led us to speculate a potential role of bLf in the management of mild-to-moderate and asymptomatic COVID-19 patients.
Subject(s)
COVID-19 , Lactoferrin , Animals , Antiviral Agents/therapeutic use , Cattle , Humans , RNA, Viral , SARS-CoV-2ABSTRACT
BACKGROUND: Disease modifying therapies for multiple sclerosis (MS) can impair the specific immune response to severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Specifically, it is recognized that ocrelizumab reduces or abrogates anti-SARS-CoV-2 antibody production after natural infection or vaccination, while very little is known about T-cell responses. METHODS: We developed an interferon (IFN)-γ release assay (IGRA) to detect T-cell responses specific to SARS-CoV-2 after overnight stimulation of whole blood with peptide libraries covering the immunodominant sequence domains of the Spike glycoprotein (S) and the Nucleocapsid phosphoprotein (N). RESULTS: Five patients with MS receiving ocrelizumab treatment for at least 1 year and recovered from SARS-CoV-2 infection were enrolled in the study. Despite the absence or the very low concentration of anti-S antibodies, a T-cell response was detectable in all the five MS patients. These results are in accordance with the marked reduction of peripheral B-lymphocyte absolute counts induced by ocrelizumab, that, conversely, did not affect peripheral blood T-lymphocyte subset absolute and relative counts and CD4/CD8 ratio. CONCLUSIONS: The detection of specific T-cell responses to SARS-CoV-2 in patients receiving B-cell depleting therapies represents a useful tool to improve the diagnostic approach in SARS-CoV-2 infection and to accurately assess the immunological response after natural infection or vaccination.
Subject(s)
Antibodies, Monoclonal, Humanized/therapeutic use , COVID-19 , Multiple Sclerosis , T-Lymphocytes/immunology , Antibodies, Viral/blood , COVID-19/immunology , Humans , Multiple Sclerosis/drug therapy , Spike Glycoprotein, Coronavirus/immunologyABSTRACT
Lactoferrin (Lf) is a cationic glycoprotein synthetized by exocrine glands and is present in all human secretions. It is also secreted by neutrophils in infection and inflammation sites. This glycoprotein possesses antimicrobial activity due to its capability to chelate two ferric ions per molecule, as well as to interact with bacterial and viral anionic surface components. The cationic features of Lf bind to cells, protecting the host from bacterial and viral injuries. Its anti-inflammatory activity is mediated by the ability to enter inside the nucleus of host cells, thus inhibiting the synthesis of proinflammatory cytokine genes. In particular, Lf down-regulates the synthesis of IL-6, which is involved in iron homeostasis disorders and leads to intracellular iron overload, favoring viral replication and infection. The well-known antiviral activity of Lf has been demonstrated against DNA, RNA, and enveloped and naked viruses and, therefore, Lf could be efficient in counteracting also SARS-CoV-2 infection. For this purpose, we performed in vitro assays, proving that Lf exerts an antiviral activity against SARS-COV-2 through direct attachment to both SARS-CoV-2 and cell surface components. This activity varied according to concentration (100/500 µg/ml), multiplicity of infection (0.1/0.01), and cell type (Vero E6/Caco-2 cells). Interestingly, the in silico results strongly supported the hypothesis of a direct recognition between Lf and the spike S glycoprotein, which can thus hinder viral entry into the cells. These in vitro observations led us to speculate a potential supplementary role of Lf in the management of COVID-19 patients.
ABSTRACT
The aim of this study was to evaluate the role of baseline lymphocyte subset counts in predicting the outcome and severity of COVID-19 patients. Hospitalized patients confirmed to be infected with Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) were included and classified according to in-hospital mortality (survivors/nonsurvivors) and the maximal oxygen support/ventilation supply required (nonsevere/severe). Demographics, clinical and laboratory data, and peripheral blood lymphocyte subsets were retrospectively analyzed. Overall, 160 patients were retrospectively included in the study. T-lymphocyte subset (total CD3+, CD3+ CD4+, CD3+ CD8+, CD3+ CD4+ CD8+ double positive [DP] and CD3+ CD4- CD8- double negative [DN]) absolute counts were decreased in nonsurvivors and in patients with severe disease compared to survivors and nonsevere patients (p < 0.001). Multivariable logistic regression analysis showed that absolute counts of CD3+ T-lymphocytes < 524 cells/µl, CD3+ CD4+ < 369 cells/µl, and the number of T-lymphocyte subsets below the cutoff (T-lymphocyte subset index [TLSI]) were independent predictors of in-hospital mortality. Baseline T-lymphocyte subset counts and TLSI were also predictive of disease severity (CD3+ < 733 cells/µl; CD3+ CD4+ < 426 cells/µl; CD3+ CD8+ < 262 cells/µl; CD3+ DP < 4.5 cells/µl; CD3+ DN < 18.5 cells/µl). The evaluation of peripheral T-lymphocyte absolute counts in the early stages of COVID-19 might represent a useful tool for identifying patients at increased risk of unfavorable outcomes.
Subject(s)
CD4-Positive T-Lymphocytes , CD8-Positive T-Lymphocytes , COVID-19/blood , COVID-19/mortality , SARS-CoV-2/genetics , Severity of Illness Index , T-Lymphocyte Subsets , Aged , Aged, 80 and over , COVID-19/epidemiology , COVID-19/virology , Female , Hospital Mortality , Humans , Lymphocyte Count , Male , Middle Aged , Nasopharynx/virology , Retrospective Studies , Reverse Transcriptase Polymerase Chain Reaction , Risk Factors , Rome/epidemiologyABSTRACT
In this study, we compared the incidence of pneumomediastinum in coronavirus disease (COVID-19) patients during the ascending phases of the 1st and 2nd epidemic waves. Crude incidence was higher during the 2nd wave at a quasi-significant level (0.68/1000 vs. 2.05/1000 patient-days, p = 0.05). When restricting the analysis to patients who developed pneumomediastinum during noninvasive ventilation, the difference became clearly significant (0.17/1000 vs 1.36/1000 patient-days, p = 0.039). At logistic regression, predisposing factors (p = 0.031), and COVID-19 radiological severity (p = 0.019) were independently associated with pneumomediastinum. Mortality in patients with pneumomediastinum was 87.5%. However, pneumomediastinum seemed to be related to a generally worse disease presentation in hospitalized patients during the 2nd wave, rather than to a separate pattern of disease.
Subject(s)
COVID-19 , Mediastinal Emphysema , COVID-19/complications , Humans , Incidence , Mediastinal Emphysema/diagnostic imaging , Mediastinal Emphysema/epidemiology , Mediastinal Emphysema/etiology , Pneumothorax , SARS-CoV-2ABSTRACT
BACKGROUND: Despite an impressive effort in clinical research, no standard therapeutic approach for coronavirus disease 2019 (COVID-19) patients has been established, highlighting the need to identify early biomarkers for predicting disease progression and new therapeutic interventions for patient management. The present study aimed to evaluate the involvement of the human endogenous retrovirus -W envelope (HERV-W ENV) in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection considering recent findings that HERVs are activated in response to infectious agents and lead to various immunopathological effects. We analysed HERV-W ENV expression in blood cells of COVID-19 patients in correlation with clinical characteristics and have discussed its potential role in the outcome of the disease. METHODS: We analysed HERV-W ENV expression in blood samples of COVID-19 patients and healthy donors by flow cytometry and quantitative reverse transcriptase PCR analysis, and evaluated its correlation with clinical signs, inflammatory markers, cytokine expression, and disease progression. FINDINGS: HERV-W ENV was highly expressed in the leukocytes of COVID-19 patients but not in those of healthy donors. Its expression correlated with the markers of T-cell differentiation and exhaustion and blood cytokine levels. The percentage of HERV-W ENV-positive lymphocytes correlated with inflammatory markers and pneumonia severity in COVID-19 patients. Notably, HERV-W ENV expression reflects the respiratory outcome of patients during hospitalization. INTERPRETATION: Given the known immuno- and neuro-pathogenicity of HERV-W ENV protein, it could promote certain pathogenic features of COVID-19 and therefore serve as a biomarker to predict clinical progression of disease and open to further studies for therapeutic intervention. FUNDING: Information available at the end of the manuscript.
Subject(s)
COVID-19/virology , Gene Products, env/metabolism , Pregnancy Proteins/metabolism , T-Lymphocytes/virology , Aged , Antiviral Agents/therapeutic use , COVID-19/etiology , COVID-19/therapy , Case-Control Studies , Cell Differentiation , Cytokines/metabolism , Endogenous Retroviruses , Female , Gene Products, env/genetics , Hospitalization , Humans , Interleukin-6/blood , Interleukin-6/pharmacology , Leukocytes, Mononuclear/drug effects , Leukocytes, Mononuclear/metabolism , Male , Middle Aged , Pneumonia, Viral/diagnostic imaging , Pneumonia, Viral/therapy , Pneumonia, Viral/virology , Pregnancy Proteins/genetics , Severity of Illness Index , T-Lymphocytes/metabolism , Treatment OutcomeABSTRACT
BACKGROUND: Coronavirus disease 2019 (COVID-19) is characterized by immune-mediated lung injury and complex alterations of the immune system, such as lymphopenia and cytokine storm, that have been associated with adverse outcomes underlining a fundamental role of host response in severe acute respiratory syndrome coronavirus 2 infection and the pathogenesis of the disease. Thymosin alpha 1 (Tα1) is one of the molecules used in the management of COVID-19, because it is known to restore the homeostasis of the immune system during infections and cancer. METHODS: In this study, we captured the interconnected biological processes regulated by Tα1 in CD8+ T cells under inflammatory conditions. RESULTS: Genes associated with cytokine signaling and production were upregulated in blood cells from patients with COVID-19, and the ex vivo treatment with Tα1-mitigated cytokine expression, and inhibited lymphocyte activation in a CD8+ T-cell subset specifically. CONCLUSION: These data suggest the potential role of Tα1 in modulating the immune response homeostasis and the cytokine storm in vivo.