Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
iScience ; 2023.
Article in English | EuropePMC | ID: covidwho-2300394

ABSTRACT

A 25-year-old patient with a primary immunodeficiency lacking immunoglobulin production experienced a relapse after a 239-day period of persistent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Viral genetic sequencing demonstrated that SARS-CoV-2 had evolved during the infection period, with at least five mutations associated with host cellular immune recognition. Among them, the T32I mutation in ORF3a was found to evade recognition by CD4+ T cells. The virus found after relapse showed an increased proliferative capacity in vitro. SARS-CoV-2 may have evolved to evade recognition by CD4+ T cells and increased in its proliferative capacity during the persistent infection, likely leading to relapse. These mutations may further affect viral clearance in hosts with similar types of human leukocyte antigens. The early elimination of SARS-CoV-2 in immunocompromised patients is therefore important not only to improve the condition of patients but also to prevent the emergence of mutants that threaten public health. Graphical

3.
Biocontrol Sci ; 27(4): 223-228, 2022.
Article in English | MEDLINE | ID: covidwho-2202199

ABSTRACT

The recent emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a major burden for health care systems worldwide, and is a threat to our daily lives. Various effective ingredients against SARS-CoV-2 were already reported, however, since products contain various ingredients, it is also important to evaluate the effectiveness of commercially available disinfectants per se. In this study, the virucidal efficacy of forty-eight commercially available products were evaluated according to the standardized suspension method EN 14476 and the following results were obtained: Alcohol-based disinfectants, hand soaps, wet wipes, alkaline cleaners, quaternary ammonium compound sanitizers and oxygen bleach had great virucidal efficacy against SARS-CoV-2. Enveloped viruses such as SARS-CoV-2 are among the most susceptible of pathogens to formulated microbicidal actives and detergents, but as the results of this study showed, it is also necessary to pay attention to the concentration at the time of use and the required contact time.


Subject(s)
COVID-19 , Disinfectants , Humans , Disinfectants/pharmacology , SARS-CoV-2 , COVID-19/prevention & control , Ethanol/pharmacology , Quaternary Ammonium Compounds
4.
Sci Rep ; 12(1): 15612, 2022 09 16.
Article in English | MEDLINE | ID: covidwho-2036890

ABSTRACT

Many therapeutic antibodies (Abs) and mRNA vaccines, both targeting SARS-CoV-2 spike protein (S-protein), have been developed and approved in order to combat the ongoing COVID-19 pandemic. In consideration of these developments, a common concern has been the potential for Ab-dependent enhancement (ADE) of infection caused by inoculated or induced Abs. Although the preventive and therapeutic effects of these Abs are obvious, little attention has been paid to the influence of the remaining and dwindling anti-S-protein Abs in vivo. Here, we demonstrate that certain monoclonal Abs (mAbs) approved as therapeutic neutralizing anti-S-protein mAbs for human usage have the potential to cause ADE in a narrow range of Ab concentrations. Although sera collected from mRNA-vaccinated individuals exhibited neutralizing activity, some sera gradually exhibited dominance of ADE activity in a time-dependent manner. None of the sera examined exhibited neutralizing activity against infection with the Omicron strain. Rather, some ADE of Omicron infection was observed in some sera. These results suggest the possible emergence of adverse effects caused by these Abs in addition to the therapeutic or preventive effect.


Subject(s)
Antibody-Dependent Enhancement , COVID-19 Vaccines , COVID-19 , Immune Sera , SARS-CoV-2 , Angiotensin-Converting Enzyme 2 , Antibodies, Viral , COVID-19/immunology , COVID-19/prevention & control , COVID-19/therapy , COVID-19 Vaccines/immunology , Humans , Immunization, Passive , Pandemics , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , COVID-19 Serotherapy
5.
Trop Med Infect Dis ; 7(3)2022 Feb 28.
Article in English | MEDLINE | ID: covidwho-1715734

ABSTRACT

Influenza is one of the most common respiratory virus infections. We analyzed hemagglutinin (HA) and neuraminidase (NA) gene segments of viruses isolated from influenza patients who visited Evercare Hospital Dhaka, Bangladesh, in early 2020 immediately before the coronavirus disease 2019 (COVID-19) pandemic. All of them were influenza virus type A (IAV) H1N1pdm. Sequence analysis of the HA segments of the virus strains isolated from the clinical specimens and the subsequent phylogenic analyses of the obtained sequences revealed that all of the H1N1pdm recent subclades 6B.1A5A + 187V/A, 6B.1A5A + 156K, and 6B.1A5A + 156K with K209M were already present in Bangladesh in January 2020. Molecular clock analysis results suggested that the subclade 6B.1A5A + 156K emerged in Denmark, Australia, or the United States in July 2019, while subclades 6B.1A5A + 187V/A and 6B.1A5A + 156K with K209M emerged in East Asia in April and September 2019, respectively. On the other hand, sequence analysis of NA segments showed that the viruses lacked the H275Y mutation that confers oseltamivir resistance. Since the number of influenza cases in Bangladesh is usually small between November and January, these results indicated that the IAV H1N1pdm had spread extremely rapidly without acquiring oseltamivir resistance during a time of active international flow of people before the COVID-19 pandemic.

6.
Sci Rep ; 11(1): 23713, 2021 12 09.
Article in English | MEDLINE | ID: covidwho-1565736

ABSTRACT

Since the emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), many vaccine trials have been initiated. An important goal of vaccination is the development of neutralizing antibody (Ab) against SARS-CoV-2. However, the possible induction of antibody-dependent enhancement (ADE) of infection, which is known for other coronaviruses and dengue virus infections, is a particular concern in vaccine development. Here, we demonstrated that human iPS cell-derived, immortalized, and ACE2- and TMPRSS2-expressing myeloid cell lines are useful as host cells for SARS-CoV-2 infection. The established cell lines were cloned and screened based on their function in terms of susceptibility to SARS-CoV-2-infection or IL-6 productivity. Using the resulting K-ML2 (AT) clone 35 for SARS-CoV-2-infection or its subclone 35-40 for IL-6 productivity, it was possible to evaluate the potential of sera from severe COVID-19 patients to cause ADE and to stimulate IL-6 production upon infection with SARS-CoV-2.


Subject(s)
Antibody-Dependent Enhancement , COVID-19/immunology , COVID-19/metabolism , Interleukin-6/metabolism , SARS-CoV-2/immunology , Angiotensin-Converting Enzyme 2/metabolism , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Cell Line , Humans , Myeloid Cells/immunology , Myeloid Cells/metabolism , Patients , Serine Endopeptidases/metabolism
7.
Microorganisms ; 9(11)2021 Oct 25.
Article in English | MEDLINE | ID: covidwho-1480879

ABSTRACT

To help control the global pandemic of coronavirus disease 2019 (COVID-19), we developed a diagnostic method targeting the spike protein of the virus that causes the infection, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We applied an ultrasensitive method by combining a sandwich enzyme-linked immunosorbent assay (ELISA) and the thio-nicotinamide adenine dinucleotide (thio-NAD) cycling reaction to quantify spike S1 proteins. The limit of detection (LOD) was 2.62 × 10-19 moles/assay for recombinant S1 proteins and 2.6 × 106 RNA copies/assay for ultraviolet B-inactivated viruses. We have already shown that the ultrasensitive ELISA for nucleocapsid proteins can detect ultraviolet B-inactivated viruses at the 104 RNA copies/assay level, whereas the nucleocapsid proteins of SARS-CoV-2 are difficult to distinguish from those in conventional coronaviruses and SARS-CoV. Thus, an antigen test for only the nucleocapsid proteins is insufficient for virus specificity. Therefore, the use of a combination of tests against both spike and nucleocapsid proteins is recommended to increase both the detection sensitivity and testing accuracy of the COVID-19 antigen test. Taken together, our present study, in which we incorporate S1 detection by combining the ultrasensitive ELISA for nucleocapsid proteins, offers an ultrasensitive, antigen-specific test for COVID-19.

8.
Biol Pharm Bull ; 44(9): 1332-1336, 2021 Sep 01.
Article in English | MEDLINE | ID: covidwho-1388871

ABSTRACT

Antigen tests for infectious diseases are inexpensive and easy-to-use, but the limit of detection (LOD) is generally higher than that of PCR tests, which are considered the gold standard. In the present study, we combined a sandwich enzyme-linked immunosorbent assay (ELISA) with thionicotinamide-adenine dinucleotide (thio-NAD) cycling to improve the LOD of antigen tests for coronavirus disease 2019 (COVID-19). For recombinant nucleocapsid proteins of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the LOD of our ELISA with thio-NAD cycling was 2.95 × 10-17 moles/assay. When UV-irradiated inactive SARS-CoV-2 was used, the minimum detectable virions corresponding to 2.6 × 104 RNA copies/assay were obtained using our ELISA with thio-NAD cycling. The assay volume for each test was 100 µL. The minimum detectable value was smaller than that of the latest antigen test using a fluorescent immunoassay for SARS-CoV-2, indicating the validity of our detection system for COVID-19 diagnosis.


Subject(s)
Antibodies, Viral , COVID-19 Testing/methods , COVID-19/diagnosis , Enzyme-Linked Immunosorbent Assay/methods , NAD/analogs & derivatives , Nucleocapsid Proteins/immunology , SARS-CoV-2 , Antigens, Viral , COVID-19/virology , Humans , Immunologic Tests , Limit of Detection , Nucleocapsid/analysis , Sensitivity and Specificity
9.
J Med Virol ; 93(10): 5917-5923, 2021 10.
Article in English | MEDLINE | ID: covidwho-1272212

ABSTRACT

Since the coronavirus disease 2019 (COVID-19) outbreak, laboratory diagnosis has mainly been conducted using reverse-transcription polymerase chain reaction (RT-PCR). Detecting the presence of an infectious virus in the collected sample is essential to analyze if a person can transmit infectious severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, there have been no quantitative investigations conducted for infectious SARS-CoV-2 in clinical samples. Therefore, in the present study, a rapid and simple focus-forming assay using the peroxidase-antiperoxidase technique was developed to quantify infectious SARS-CoV-2 titers in 119 samples (n = 52, nasopharyngeal swabs [NPS]; n = 67, saliva) from patients with COVID-19. Furthermore, the study findings were compared with the cycle threshold (Ct) values of real-time RT-PCR. The infectious virus titers in NPS samples and Ct values were inversely correlated, and no infectious virus could be detected when the Ct value exceeded 30. In contrast, a low correlation was observed between the infectious virus titers in saliva and Ct values (r = -0.261, p = 0.027). Furthermore, the infectious virus titers in the saliva were significantly lower than those in the NPS samples. Ten days after the onset of COVID-19 symptoms, the infectious virus was undetectable, and Ct values were more than 30 in NSP and saliva samples. The results indicate that patients whose symptoms subsided 10 days after onset, with Ct values more than 30 in NSP and saliva samples, were less likely to infect others.


Subject(s)
COVID-19 Testing , COVID-19/diagnosis , SARS-CoV-2/isolation & purification , Viral Plaque Assay , Adolescent , Adult , Aged , Aged, 80 and over , COVID-19/virology , Child , Child, Preschool , Female , Humans , Infant , Male , Middle Aged , Nasopharynx/virology , Reverse Transcriptase Polymerase Chain Reaction , Saliva/virology , Viral Load , Young Adult
10.
Transfusion ; 61(2): 356-360, 2021 02.
Article in English | MEDLINE | ID: covidwho-889820

ABSTRACT

BACKGROUND: There are several types of coronaviruses that infect humans and cause disease. The latest is severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which is an emerging global threat with no current effective treatment. Normal intravenous immunoglobulin (N-IVIG) has been administered to coronavirus disease 2019 (COVID-19) patients to control severe inflammation and the cellular immune response. However, the neutralizing activity of N-IVIG against SARS-CoV-2 has not yet been fully evaluated. The aim of this study was to determine whether N-IVIG manufactured before the start of the COVID-19 pandemic contained IgG antibodies against the circulating human coronaviruses (HCoVs) that cross-react with the highly pathogenic coronaviruses SARS-CoV-1, Middle East respiratory syndrome coronavirus (MERS-CoV), and SARS-CoV-2. No cases of SARS-CoV-1 or MERS-CoV have been reported in Japan. STUDY DESIGN AND METHODS: The neutralizing and binding activities of N-IVIG against SARS-CoV-1, MERS-CoV, SARS-CoV-2, HCoV 229E, and HCoV OC43 were evaluated. Nine N-IVIG lots manufactured between 2000 and 2018, derived from donors in Japan, were tested. Binding activity was evaluated by indirect immunofluorescence assay. RESULTS: None of the N-IVIG lots tested displayed neutralizing or binding activity against SARS-CoV-1, MERS-CoV, or SARS-CoV-2. However, they displayed substantial neutralizing and binding activity against HCoV OC43 and weak neutralizing and substantial binding activity against HCoV 229E. CONCLUSION: N-IVIG derived from healthy donors in Japan before the start of the COVID-19 pandemic had no direct effect against SARS-CoV-2. Further studies are warranted to determine the effects of N-IVIG manufactured after the start of the COVID-19 pandemic against SARS-CoV-2.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/metabolism , Coronavirus 229E, Human/immunology , Coronavirus OC43, Human/immunology , Immunoglobulins, Intravenous/immunology , Immunoglobulins, Intravenous/metabolism , Humans , Immunity, Cellular/physiology , Immunoglobulin G/immunology , Immunoglobulin G/metabolism , Japan , Middle East Respiratory Syndrome Coronavirus/immunology , Pandemics , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology
SELECTION OF CITATIONS
SEARCH DETAIL