Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Bradbury, Charlotte A. M. D. PhD, Lawler, Patrick R. M. D. M. P. H.; Stanworth, Simon J. M. D.; McVerry, Bryan J. M. D.; McQuilten, Zoe PhD, Higgins, Alisa M. PhD, Mouncey, Paul R. MSc, Al-Beidh, Farah PhD, Rowan, Kathryn M. PhD, Berry, Lindsay R. PhD, Lorenzi, Elizabeth PhD, Zarychanski, Ryan M. D. MSc, Arabi, Yaseen M. M. D.; Annane, Djillali M. D. PhD, Beane, Abi PhD, van Bentum-Puijk, Wilma MSc, Bhimani, Zahra M. P. H.; Bihari, Shailesh PhD, M Bonten, Marc J. M. D. PhD, Brunkhorst, Frank M. M. D. PhD, Buzgau, Adrian MSc, Buxton, Meredith PhD, Carrier, Marc M. D. MSc, Cheng, Allen C. Mbbs PhD, Cove, Matthew Mbbs, Detry, Michelle A. PhD, Estcourt, Lise J. MBBCh PhD, Fitzgerald, Mark PhD, Girard, Timothy D. M. D. Msci, Goligher, Ewan C. M. D. PhD, Goossens, Herman PhD, Haniffa, Rashan PhD, Hills, Thomas Mbbs PhD, Huang, David T. M. D. M. P. H.; Horvat, Christopher M. M. D.; Hunt, Beverley J. M. D. PhD, Ichihara, Nao M. D. M. P. H. PhD, Lamontagne, Francois M. D.; Leavis, Helen L. M. D. PhD, Linstrum, Kelsey M. M. S.; Litton, Edward M. D. PhD, Marshall, John C. M. D.; McAuley, Daniel F. M. D.; McGlothlin, Anna PhD, McGuinness, Shay P. M. D.; Middeldorp, Saskia M. D. PhD, Montgomery, Stephanie K. MSc, Morpeth, Susan C. M. D. PhD, Murthy, Srinivas M. D.; Neal, Matthew D. M. D.; Nichol, Alistair D. M. D. PhD, Parke, Rachael L. PhD, Parker, Jane C. B. N.; Reyes, Luis F. M. D. PhD, Saito, Hiroki M. D. M. P. H.; Santos, Marlene S. M. D. Mshs, Saunders, Christina T. PhD, Serpa-Neto, Ary PhD MSc M. D.; Seymour, Christopher W. M. D. MSc, Shankar-Hari, Manu M. D. PhD, Singh, Vanessa, Tolppa, Timo Mbbs, Turgeon, Alexis F. M. D. MSc, Turner, Anne M. M. P. H.; van de Veerdonk, Frank L. M. D. PhD, Green, Cameron MSc, Lewis, Roger J. M. D. PhD, Angus, Derek C. M. D. M. P. H.; McArthur, Colin J. M. D.; Berry, Scott PhD, G Derde, Lennie P. M. D. PhD, Webb, Steve A. M. D. PhD, Gordon, Anthony C. Mbbs M. D..
JAMA ; 327(13):1247, 2022.
Article in English | ProQuest Central | ID: covidwho-1801957

ABSTRACT

Importance The efficacy of antiplatelet therapy in critically ill patients with COVID-19 is uncertain. Objective To determine whether antiplatelet therapy improves outcomes for critically ill adults with COVID-19. Design, Setting, and Participants In an ongoing adaptive platform trial (REMAP-CAP) testing multiple interventions within multiple therapeutic domains, 1557 critically ill adult patients with COVID-19 were enrolled between October 30, 2020, and June 23, 2021, from 105 sites in 8 countries and followed up for 90 days (final follow-up date: July 26, 2021). Interventions Patients were randomized to receive either open-label aspirin (n = 565), a P2Y12 inhibitor (n = 455), or no antiplatelet therapy (control;n = 529). Interventions were continued in the hospital for a maximum of 14 days and were in addition to anticoagulation thromboprophylaxis. Main Outcomes and Measures The primary end point was organ support–free days (days alive and free of intensive care unit–based respiratory or cardiovascular organ support) within 21 days, ranging from −1 for any death in hospital (censored at 90 days) to 22 for survivors with no organ support. There were 13 secondary outcomes, including survival to discharge and major bleeding to 14 days. The primary analysis was a bayesian cumulative logistic model. An odds ratio (OR) greater than 1 represented improved survival, more organ support–free days, or both. Efficacy was defined as greater than 99% posterior probability of an OR greater than 1. Futility was defined as greater than 95% posterior probability of an OR less than 1.2 vs control. Intervention equivalence was defined as greater than 90% probability that the OR (compared with each other) was between 1/1.2 and 1.2 for 2 noncontrol interventions. Results The aspirin and P2Y12 inhibitor groups met the predefined criteria for equivalence at an adaptive analysis and were statistically pooled for further analysis. Enrollment was discontinued after the prespecified criterion for futility was met for the pooled antiplatelet group compared with control. Among the 1557 critically ill patients randomized, 8 patients withdrew consent and 1549 completed the trial (median age, 57 years;521 [33.6%] female). The median for organ support–free days was 7 (IQR, −1 to 16) in both the antiplatelet and control groups (median-adjusted OR, 1.02 [95% credible interval {CrI}, 0.86-1.23];95.7% posterior probability of futility). The proportions of patients surviving to hospital discharge were 71.5% (723/1011) and 67.9% (354/521) in the antiplatelet and control groups, respectively (median-adjusted OR, 1.27 [95% CrI, 0.99-1.62];adjusted absolute difference, 5% [95% CrI, −0.2% to 9.5%];97% posterior probability of efficacy). Among survivors, the median for organ support–free days was 14 in both groups. Major bleeding occurred in 2.1% and 0.4% of patients in the antiplatelet and control groups (adjusted OR, 2.97 [95% CrI, 1.23-8.28];adjusted absolute risk increase, 0.8% [95% CrI, 0.1%-2.7%];99.4% probability of harm). Conclusions and Relevance Among critically ill patients with COVID-19, treatment with an antiplatelet agent, compared with no antiplatelet agent, had a low likelihood of providing improvement in the number of organ support–free days within 21 days.

2.
Lancet ; 398(10303): 843-855, 2021 09 04.
Article in English | MEDLINE | ID: covidwho-1599473

ABSTRACT

BACKGROUND: A previous efficacy trial found benefit from inhaled budesonide for COVID-19 in patients not admitted to hospital, but effectiveness in high-risk individuals is unknown. We aimed to establish whether inhaled budesonide reduces time to recovery and COVID-19-related hospital admissions or deaths among people at high risk of complications in the community. METHODS: PRINCIPLE is a multicentre, open-label, multi-arm, randomised, controlled, adaptive platform trial done remotely from a central trial site and at primary care centres in the UK. Eligible participants were aged 65 years or older or 50 years or older with comorbidities, and unwell for up to 14 days with suspected COVID-19 but not admitted to hospital. Participants were randomly assigned to usual care, usual care plus inhaled budesonide (800 µg twice daily for 14 days), or usual care plus other interventions, and followed up for 28 days. Participants were aware of group assignment. The coprimary endpoints are time to first self-reported recovery and hospital admission or death related to COVID-19, within 28 days, analysed using Bayesian models. The primary analysis population included all eligible SARS-CoV-2-positive participants randomly assigned to budesonide, usual care, and other interventions, from the start of the platform trial until the budesonide group was closed. This trial is registered at the ISRCTN registry (ISRCTN86534580) and is ongoing. FINDINGS: The trial began enrolment on April 2, 2020, with randomisation to budesonide from Nov 27, 2020, until March 31, 2021, when the prespecified time to recovery superiority criterion was met. 4700 participants were randomly assigned to budesonide (n=1073), usual care alone (n=1988), or other treatments (n=1639). The primary analysis model includes 2530 SARS-CoV-2-positive participants, with 787 in the budesonide group, 1069 in the usual care group, and 974 receiving other treatments. There was a benefit in time to first self-reported recovery of an estimated 2·94 days (95% Bayesian credible interval [BCI] 1·19 to 5·12) in the budesonide group versus the usual care group (11·8 days [95% BCI 10·0 to 14·1] vs 14·7 days [12·3 to 18·0]; hazard ratio 1·21 [95% BCI 1·08 to 1·36]), with a probability of superiority greater than 0·999, meeting the prespecified superiority threshold of 0·99. For the hospital admission or death outcome, the estimated rate was 6·8% (95% BCI 4·1 to 10·2) in the budesonide group versus 8·8% (5·5 to 12·7) in the usual care group (estimated absolute difference 2·0% [95% BCI -0·2 to 4·5]; odds ratio 0·75 [95% BCI 0·55 to 1·03]), with a probability of superiority 0·963, below the prespecified superiority threshold of 0·975. Two participants in the budesonide group and four in the usual care group had serious adverse events (hospital admissions unrelated to COVID-19). INTERPRETATION: Inhaled budesonide improves time to recovery, with a chance of also reducing hospital admissions or deaths (although our results did not meet the superiority threshold), in people with COVID-19 in the community who are at higher risk of complications. FUNDING: National Institute of Health Research and United Kingdom Research Innovation.


Subject(s)
Budesonide/administration & dosage , COVID-19/drug therapy , Glucocorticoids/administration & dosage , Administration, Inhalation , Aged , Bayes Theorem , COVID-19/mortality , Female , Hospitalization , Humans , Male , Middle Aged , Prospective Studies , Risk Factors , SARS-CoV-2 , Treatment Outcome
3.
Lancet Respir Med ; 9(9): 1010-1020, 2021 09.
Article in English | MEDLINE | ID: covidwho-1331331

ABSTRACT

BACKGROUND: Doxycycline is often used for treating COVID-19 respiratory symptoms in the community despite an absence of evidence from clinical trials to support its use. We aimed to assess the efficacy of doxycycline to treat suspected COVID-19 in the community among people at high risk of adverse outcomes. METHODS: We did a national, open-label, multi-arm, adaptive platform randomised trial of interventions against COVID-19 in older people (PRINCIPLE) across primary care centres in the UK. We included people aged 65 years or older, or 50 years or older with comorbidities (weakened immune system, heart disease, hypertension, asthma or lung disease, diabetes, mild hepatic impairment, stroke or neurological problem, and self-reported obesity or body-mass index of 35 kg/m2 or greater), who had been unwell (for ≤14 days) with suspected COVID-19 or a positive PCR test for SARS-CoV-2 infection in the community. Participants were randomly assigned using response adaptive randomisation to usual care only, usual care plus oral doxycycline (200 mg on day 1, then 100 mg once daily for the following 6 days), or usual care plus other interventions. The interventions reported in this manuscript are usual care plus doxycycline and usual care only; evaluations of other interventions in this platform trial are ongoing. The coprimary endpoints were time to first self-reported recovery, and hospitalisation or death related to COVID-19, both measured over 28 days from randomisation and analysed by intention to treat. This trial is ongoing and is registered with ISRCTN, 86534580. FINDINGS: The trial opened on April 2, 2020. Randomisation to doxycycline began on July 24, 2020, and was stopped on Dec 14, 2020, because the prespecified futility criterion was met; 2689 participants were enrolled and randomised between these dates. Of these, 2508 (93·3%) participants contributed follow-up data and were included in the primary analysis: 780 (31·1%) in the usual care plus doxycycline group, 948 in the usual care only group (37·8%), and 780 (31·1%) in the usual care plus other interventions group. Among the 1792 participants randomly assigned to the usual care plus doxycycline and usual care only groups, the mean age was 61·1 years (SD 7·9); 999 (55·7%) participants were female and 790 (44·1%) were male. In the primary analysis model, there was little evidence of difference in median time to first self-reported recovery between the usual care plus doxycycline group and the usual care only group (9·6 [95% Bayesian Credible Interval [BCI] 8·3 to 11·0] days vs 10·1 [8·7 to 11·7] days, hazard ratio 1·04 [95% BCI 0·93 to 1·17]). The estimated benefit in median time to first self-reported recovery was 0·5 days [95% BCI -0·99 to 2·04] and the probability of a clinically meaningful benefit (defined as ≥1·5 days) was 0·10. Hospitalisation or death related to COVID-19 occurred in 41 (crude percentage 5·3%) participants in the usual care plus doxycycline group and 43 (4·5%) in the usual care only group (estimated absolute percentage difference -0·5% [95% BCI -2·6 to 1·4]); there were five deaths (0·6%) in the usual care plus doxycycline group and two (0·2%) in the usual care only group. INTERPRETATION: In patients with suspected COVID-19 in the community in the UK, who were at high risk of adverse outcomes, treatment with doxycycline was not associated with clinically meaningful reductions in time to recovery or hospital admissions or deaths related to COVID-19, and should not be used as a routine treatment for COVID-19. FUNDING: UK Research and Innovation, Department of Health and Social Care, National Institute for Health Research.


Subject(s)
Anti-Bacterial Agents/administration & dosage , COVID-19/drug therapy , Doxycycline/administration & dosage , Age Factors , Aged , Aged, 80 and over , Anti-Bacterial Agents/adverse effects , COVID-19/diagnosis , COVID-19/mortality , COVID-19/virology , Doxycycline/adverse effects , Female , Hospitalization/statistics & numerical data , Humans , Intention to Treat Analysis , Male , Middle Aged , Minimal Clinically Important Difference , Risk Factors , SARS-CoV-2/isolation & purification , Self Report/statistics & numerical data , Treatment Outcome , United Kingdom/epidemiology
4.
N Engl J Med ; 384(16): 1491-1502, 2021 04 22.
Article in English | MEDLINE | ID: covidwho-1101727

ABSTRACT

BACKGROUND: The efficacy of interleukin-6 receptor antagonists in critically ill patients with coronavirus disease 2019 (Covid-19) is unclear. METHODS: We evaluated tocilizumab and sarilumab in an ongoing international, multifactorial, adaptive platform trial. Adult patients with Covid-19, within 24 hours after starting organ support in the intensive care unit (ICU), were randomly assigned to receive tocilizumab (8 mg per kilogram of body weight), sarilumab (400 mg), or standard care (control). The primary outcome was respiratory and cardiovascular organ support-free days, on an ordinal scale combining in-hospital death (assigned a value of -1) and days free of organ support to day 21. The trial uses a Bayesian statistical model with predefined criteria for superiority, efficacy, equivalence, or futility. An odds ratio greater than 1 represented improved survival, more organ support-free days, or both. RESULTS: Both tocilizumab and sarilumab met the predefined criteria for efficacy. At that time, 353 patients had been assigned to tocilizumab, 48 to sarilumab, and 402 to control. The median number of organ support-free days was 10 (interquartile range, -1 to 16) in the tocilizumab group, 11 (interquartile range, 0 to 16) in the sarilumab group, and 0 (interquartile range, -1 to 15) in the control group. The median adjusted cumulative odds ratios were 1.64 (95% credible interval, 1.25 to 2.14) for tocilizumab and 1.76 (95% credible interval, 1.17 to 2.91) for sarilumab as compared with control, yielding posterior probabilities of superiority to control of more than 99.9% and of 99.5%, respectively. An analysis of 90-day survival showed improved survival in the pooled interleukin-6 receptor antagonist groups, yielding a hazard ratio for the comparison with the control group of 1.61 (95% credible interval, 1.25 to 2.08) and a posterior probability of superiority of more than 99.9%. All secondary analyses supported efficacy of these interleukin-6 receptor antagonists. CONCLUSIONS: In critically ill patients with Covid-19 receiving organ support in ICUs, treatment with the interleukin-6 receptor antagonists tocilizumab and sarilumab improved outcomes, including survival. (REMAP-CAP ClinicalTrials.gov number, NCT02735707.).


Subject(s)
Antibodies, Monoclonal, Humanized/therapeutic use , COVID-19/drug therapy , Receptors, Interleukin-6/antagonists & inhibitors , Adult , Aged , Antibodies, Monoclonal, Humanized/adverse effects , COVID-19/complications , COVID-19/mortality , COVID-19/therapy , Critical Illness , Female , Hospital Mortality , Humans , Intensive Care Units , Male , Middle Aged , Odds Ratio , Respiration, Artificial
5.
JAMA ; 324(13): 1317-1329, 2020 10 06.
Article in English | MEDLINE | ID: covidwho-739603

ABSTRACT

Importance: Evidence regarding corticosteroid use for severe coronavirus disease 2019 (COVID-19) is limited. Objective: To determine whether hydrocortisone improves outcome for patients with severe COVID-19. Design, Setting, and Participants: An ongoing adaptive platform trial testing multiple interventions within multiple therapeutic domains, for example, antiviral agents, corticosteroids, or immunoglobulin. Between March 9 and June 17, 2020, 614 adult patients with suspected or confirmed COVID-19 were enrolled and randomized within at least 1 domain following admission to an intensive care unit (ICU) for respiratory or cardiovascular organ support at 121 sites in 8 countries. Of these, 403 were randomized to open-label interventions within the corticosteroid domain. The domain was halted after results from another trial were released. Follow-up ended August 12, 2020. Interventions: The corticosteroid domain randomized participants to a fixed 7-day course of intravenous hydrocortisone (50 mg or 100 mg every 6 hours) (n = 143), a shock-dependent course (50 mg every 6 hours when shock was clinically evident) (n = 152), or no hydrocortisone (n = 108). Main Outcomes and Measures: The primary end point was organ support-free days (days alive and free of ICU-based respiratory or cardiovascular support) within 21 days, where patients who died were assigned -1 day. The primary analysis was a bayesian cumulative logistic model that included all patients enrolled with severe COVID-19, adjusting for age, sex, site, region, time, assignment to interventions within other domains, and domain and intervention eligibility. Superiority was defined as the posterior probability of an odds ratio greater than 1 (threshold for trial conclusion of superiority >99%). Results: After excluding 19 participants who withdrew consent, there were 384 patients (mean age, 60 years; 29% female) randomized to the fixed-dose (n = 137), shock-dependent (n = 146), and no (n = 101) hydrocortisone groups; 379 (99%) completed the study and were included in the analysis. The mean age for the 3 groups ranged between 59.5 and 60.4 years; most patients were male (range, 70.6%-71.5%); mean body mass index ranged between 29.7 and 30.9; and patients receiving mechanical ventilation ranged between 50.0% and 63.5%. For the fixed-dose, shock-dependent, and no hydrocortisone groups, respectively, the median organ support-free days were 0 (IQR, -1 to 15), 0 (IQR, -1 to 13), and 0 (-1 to 11) days (composed of 30%, 26%, and 33% mortality rates and 11.5, 9.5, and 6 median organ support-free days among survivors). The median adjusted odds ratio and bayesian probability of superiority were 1.43 (95% credible interval, 0.91-2.27) and 93% for fixed-dose hydrocortisone, respectively, and were 1.22 (95% credible interval, 0.76-1.94) and 80% for shock-dependent hydrocortisone compared with no hydrocortisone. Serious adverse events were reported in 4 (3%), 5 (3%), and 1 (1%) patients in the fixed-dose, shock-dependent, and no hydrocortisone groups, respectively. Conclusions and Relevance: Among patients with severe COVID-19, treatment with a 7-day fixed-dose course of hydrocortisone or shock-dependent dosing of hydrocortisone, compared with no hydrocortisone, resulted in 93% and 80% probabilities of superiority with regard to the odds of improvement in organ support-free days within 21 days. However, the trial was stopped early and no treatment strategy met prespecified criteria for statistical superiority, precluding definitive conclusions. Trial Registration: ClinicalTrials.gov Identifier: NCT02735707.


Subject(s)
Anti-Inflammatory Agents/administration & dosage , Coronavirus Infections/drug therapy , Hydrocortisone/administration & dosage , Pneumonia, Viral/drug therapy , Respiration, Artificial/statistics & numerical data , Adrenal Cortex Hormones/therapeutic use , Adult , Anti-Inflammatory Agents/adverse effects , Betacoronavirus , COVID-19 , Coronavirus Infections/mortality , Coronavirus Infections/therapy , Early Termination of Clinical Trials , Female , Humans , Hydrocortisone/adverse effects , Intensive Care Units , Male , Middle Aged , Pandemics , Pneumonia, Viral/mortality , Pneumonia, Viral/therapy , SARS-CoV-2 , Shock/drug therapy , Shock/etiology , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL