Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
1.
J Med Chem ; 65(9): 6499-6512, 2022 May 12.
Article in English | MEDLINE | ID: covidwho-1821565

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has resulted in millions of deaths and threatens public health and safety. Despite the rapid global spread of COVID-19 vaccines, effective oral antiviral drugs are urgently needed. Here, we describe the discovery of S-217622, the first oral noncovalent, nonpeptidic SARS-CoV-2 3CL protease inhibitor clinical candidate. S-217622 was discovered via virtual screening followed by biological screening of an in-house compound library, and optimization of the hit compound using a structure-based drug design strategy. S-217622 exhibited antiviral activity in vitro against current outbreaking SARS-CoV-2 variants and showed favorable pharmacokinetic profiles in vivo for once-daily oral dosing. Furthermore, S-217622 dose-dependently inhibited intrapulmonary replication of SARS-CoV-2 in mice, indicating that this novel noncovalent inhibitor could be a potential oral agent for treating COVID-19.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , COVID-19/drug therapy , COVID-19 Vaccines , Coronavirus 3C Proteases , Humans , Mice , Protease Inhibitors/pharmacology , Protease Inhibitors/therapeutic use
2.
Biochemical and Biophysical Research Communications ; 2022.
Article in English | ScienceDirect | ID: covidwho-1814155

ABSTRACT

Simple, highly sensitive detection technologies for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are crucial for the effective implementation of public health policies. We used the systematic evolution of ligands by exponential enrichment with a modified DNA library, including a base-appended base (uracil with a guanine base at its fifth position), to create an aptamer with a high affinity for the receptor-binding domain (RBD) of the SARS-CoV-2 spike glycoprotein. The aptamer had a dissociation constant of 1.2 and < 1 nM for the RBD and spike trimer, respectively. Furthermore, enzyme-linked aptamer assays confirmed that the aptamer binds to isolated authentic SARS-CoV-2 wild-type and B.1.617.2 (delta variant). The binding signal was larger that of commercially available anti-SARS-CoV-2 RBD antibody. Thus, this aptamer as a sensing element will enable the highly sensitive detection of SARS-CoV-2.

3.
Cell ; 2022 May 02.
Article in English | MEDLINE | ID: covidwho-1814233

ABSTRACT

Soon after the emergence and global spread of the SARS-CoV-2 Omicron lineage BA.1, another Omicron lineage, BA.2, began outcompeting BA.1. The results of statistical analysis showed that the effective reproduction number of BA.2 is 1.4-fold higher than that of BA.1. Neutralization experiments revealed that immunity induced by COVID vaccines widely administered to human populations is not effective against BA.2, similar to BA.1, and that the antigenicity of BA.2 is notably different from that of BA.1. Cell culture experiments showed that the BA.2 spike confers higher replication efficacy in human nasal epithelial cells and is more efficient in mediating syncytia formation than the BA.1 spike. Furthermore, infection experiments using hamsters indicated that the BA.2 spike-bearing virus is more pathogenic than the BA.1 spike-bearing virus. Altogether, the results of our multiscale investigations suggest that the risk of BA.2 to global health is potentially higher than that of BA.1.

4.
Chem Pharm Bull (Tokyo) ; 70(3): 199-201, 2022 Mar 01.
Article in English | MEDLINE | ID: covidwho-1714684

ABSTRACT

MS is a powerful methodology for chemical screening to directly quantify substrates and products of enzymes, but its low throughput has been an issue. Recently, an acoustic liquid-handling apparatus (Echo®) used for rapid nano-dispensing has been coupled to a high-sensitivity mass spectrometer to create the Echo® MS system, and we applied this system to screening of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) 3CL protease inhibitors. Primary screening of 32033 chemical samples was completed in 12 h. Among the hits showing selective, dose-dependent 3CL-inhibitory activity, 8 compounds showed antiviral activity in cell-based assay.


Subject(s)
COVID-19 , Protease Inhibitors , Acoustics , COVID-19/drug therapy , High-Throughput Screening Assays/methods , Humans , Protease Inhibitors/chemistry , Protease Inhibitors/pharmacology , SARS-CoV-2
5.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-318387

ABSTRACT

Potently neutralizing SARS-CoV-2 antibodies often target the receptor binding site (RBS) of spike protein but the variability of RBS epitopes hampers broad neutralization of different clades of coronaviruses and emerging drifted viruses. Here, we identified a human RBS antibody that potently neutralizes SARS-CoV and SARS-CoV-2 variants that belong to clade 1 SARS-related coronavirus. X-ray crystallography revealed coordinated recognition by the heavy chain to conserved sites and the light chain to RBS, allowing for the mimicry of ACE2 binding mode. The minimum footprints in the hypervariable region of RBS contributed to the breadth of neutralization, and the activity was further enhanced by IgG3 switching. Eventually, the coordinated binding resulted in broad neutralization of SARS-CoV and emerging SARS-CoV-2 variants of concern. Furthermore, therapeutic treatment in a hamster model provided protection at low dosage. The structural basis for broadly neutralizing activity informs the design of broad spectrum of therapeutics and vaccines.Funding: This work was supported by Japan Agency for Medical Research and Development grant JP19fk0108111 (TH, YT), JP20fk0108298 (TK, TH, KM, YT), JP20am0101093 (KM), JP20ae0101047 (KM), JP20fk0108251 (HS), and JP20am0101124 (YK), by Ministry of Education, Culture, Sports, Science and Technology grant JPMXS0420100119 (KM) and 20H05773 (TH), by The Naito Foundation (TH), and by Joint Usage/Research Center program of Institute for Frontier Life and Medical Sciences, Kyoto University (KM).Conflict of Interest: AS is an employee of Shionogi & Co., Ltd. MO is a CEO, employee, and shareholder of Trans Chromosomics, Inc. These authors acknowledge a potential conflict of interest and attest that the work contained in this report is free of any bias that might be associated with the commercial goals of the company. TO, YA, MO, TH, KM, and YT declare that an intellectual property application has been filed using the data presented in this paper. The other authors declare that they have no competing interests.Ethical Approval: Animal procedures were approved by the Animal Ethics Committee of the National Institute of Infectious Diseases, Japan, and performed in accordance with the guidelines of the Institutional Animal Care and Use Committee. In vitro escape mutation screening experiments for SARSCoV-2 were performed at the Biosafety Level-3 facility of the Research Center for ZoonosisControl, Hokkaido University, and the National Institute of Infectious Diseases following the institutional guidelines.

6.
EuropePMC;
Preprint in English | EuropePMC | ID: ppcovidwho-327672

ABSTRACT

In parallel with vaccination, oral antiviral agents are highly anticipated to act as countermeasures for the treatment of the coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Oral antiviral medication demands not only high antiviral activity but also target specificity, favorable oral bioavailability, and high metabolic stability. Although a large number of compounds have been identified as potential inhibitors of SARS-CoV-2 infection in vitro , few have proven to be effective in vivo . Here, we show that oral administration of S-217622, a novel inhibitor of SARS-CoV-2 main protease (M pro , also known as 3C-like protease), decreases viral load and ameliorates the disease severity in SARS-CoV-2-infected hamsters. S-217622 inhibited viral proliferation at low nanomolar to sub-micromolar concentrations in cells. Oral administration of S-217622 demonstrated eminent pharmacokinetic properties and accelerated recovery from acute SARS-CoV-2 infection in hamster recipients. Moreover, S-217622 exerted antiviral activity against SARS-CoV-2 variants of concern (VOCs), including the highly pathogenic Delta variant and the recently emerged Omicron variant. Overall, our study provides evidence that S-217622, an antiviral agent that is under evaluation in a phase II/III clinical trial, possesses remarkable antiviral potency and efficacy against SARS-CoV-2 and is a prospective oral therapeutic option for COVID-19.

7.
EuropePMC;
Preprint in English | EuropePMC | ID: ppcovidwho-327671

ABSTRACT

Soon after the emergence and global spread of a new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron lineage, BA.1 (ref 1, 2 ), another Omicron lineage, BA.2, has initiated outcompeting BA.1. Statistical analysis shows that the effective reproduction number of BA.2 is 1.4-fold higher than that of BA.1. Neutralisation experiments show that the vaccine-induced humoral immunity fails to function against BA.2 like BA.1, and notably, the antigenicity of BA.2 is different from BA.1. Cell culture experiments show that BA.2 is more replicative in human nasal epithelial cells and more fusogenic than BA.1. Furthermore, infection experiments using hamsters show that BA.2 is more pathogenic than BA.1. Our multiscale investigations suggest that the risk of BA.2 for global health is potentially higher than that of BA.1.

8.
EuropePMC;
Preprint in English | EuropePMC | ID: ppcovidwho-327157

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has resulted in millions of deaths and threatens public health and safety. Despite the rapid global spread of COVID-19 vaccines, effective oral antiviral drugs are urgently needed. Here, we describe the discovery of S-217622, the first oral non-covalent, non-peptidic SARS-CoV-2 3CL protease inhibitor clinical candidate. S-217622 was discovered via virtual screening followed by biological screening of an in-house compound library, and optimization of the hit compound using a structure-based drug-design strategy. S-217622 exhibited antiviral activity in vitro against current outbreaking SARS-CoV-2 variants and showed favorable pharmacokinetic profiles in vivo for once-daily oral dosing. Furthermore, S-217622 dose-dependently inhibited intrapulmonary replication of SARS-CoV-2 in mice, indicating that this novel non-covalent inhibitor could be a potential oral agent for treating COVID-19.

9.
Nature ; 603(7902): 700-705, 2022 03.
Article in English | MEDLINE | ID: covidwho-1661969

ABSTRACT

The emergence of the Omicron variant of SARS-CoV-2 is an urgent global health concern1. In this study, our statistical modelling suggests that Omicron has spread more rapidly than the Delta variant in several countries including South Africa. Cell culture experiments showed Omicron to be less fusogenic than Delta and than an ancestral strain of SARS-CoV-2. Although the spike (S) protein of Delta is efficiently cleaved into two subunits, which facilitates cell-cell fusion2,3, the Omicron S protein was less efficiently cleaved compared to the S proteins of Delta and ancestral SARS-CoV-2. Furthermore, in a hamster model, Omicron showed decreased lung infectivity and was less pathogenic compared to Delta and ancestral SARS-CoV-2. Our multiscale investigations reveal the virological characteristics of Omicron, including rapid growth in the human population, lower fusogenicity and attenuated pathogenicity.


Subject(s)
COVID-19/pathology , COVID-19/virology , Membrane Fusion , SARS-CoV-2/metabolism , SARS-CoV-2/pathogenicity , Virus Internalization , Animals , COVID-19/epidemiology , Cell Line , Cricetinae , Humans , In Vitro Techniques , Lung/pathology , Lung/virology , Male , Mesocricetus , Mutation , SARS-CoV-2/classification , SARS-CoV-2/growth & development , South Africa/epidemiology , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Virulence , Virus Replication
10.
Nat Commun ; 12(1): 6602, 2021 11 15.
Article in English | MEDLINE | ID: covidwho-1517625

ABSTRACT

The MHC class I-mediated antigen presentation pathway plays a critical role in antiviral immunity. Here we show that the MHC class I pathway is targeted by SARS-CoV-2. Analysis of the gene expression profile from COVID-19 patients as well as SARS-CoV-2 infected epithelial cell lines reveals that the induction of the MHC class I pathway is inhibited by SARS-CoV-2 infection. We show that NLRC5, an MHC class I transactivator, is suppressed both transcriptionally and functionally by the SARS-CoV-2 ORF6 protein, providing a mechanistic link. SARS-CoV-2 ORF6 hampers type II interferon-mediated STAT1 signaling, resulting in diminished upregulation of NLRC5 and IRF1 gene expression. Moreover, SARS-CoV-2 ORF6 inhibits NLRC5 function via blocking karyopherin complex-dependent nuclear import of NLRC5. Collectively, our study uncovers an immune evasion mechanism of SARS-CoV-2 that targets the function of key MHC class I transcriptional regulators, STAT1-IRF1-NLRC5.


Subject(s)
COVID-19/immunology , Genes, MHC Class I/immunology , Interferon Regulatory Factor-1/antagonists & inhibitors , Intracellular Signaling Peptides and Proteins/antagonists & inhibitors , SARS-CoV-2/genetics , STAT1 Transcription Factor/antagonists & inhibitors , Viral Proteins/metabolism , COVID-19/genetics , COVID-19/pathology , COVID-19/virology , Cell Line , Female , Gene Expression Regulation , Humans , Male , Middle Aged , SARS-CoV-2/isolation & purification , Signal Transduction , Viral Proteins/immunology
11.
Viruses ; 13(11)2021 10 22.
Article in English | MEDLINE | ID: covidwho-1481022

ABSTRACT

Systemic symptoms have often been observed in patients with coronavirus disease 2019 (COVID-19) in addition to pneumonia, however, the details are still unclear due to the lack of an appropriate animal model. In this study, we investigated and compared blood coagulation abnormalities and tissue damage between male Syrian hamsters of 9 (young) and over 36 (aged) weeks old after intranasal infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Despite similar levels of viral replication and inflammatory responses in the lungs of both age groups, aged but not young hamsters showed significant prolongation of prothrombin time and prominent acute kidney damage. Moreover, aged hamsters demonstrated increased intravascular coagulation time-dependently in the lungs, suggesting that consumption of coagulation factors causes prothrombin time prolongation. Furthermore, proximal urinary tract damage and mesangial matrix expansion were observed in the kidneys of the aged hamsters at early and later disease stages, respectively. Given that the severity and mortality of COVID-19 are higher in elderly human patients, the effect of aging on pathogenesis needs to be understood and should be considered for the selection of animal models. We, thus, propose that the aged hamster is a good small animal model for COVID-19 research.


Subject(s)
Acute Kidney Injury/pathology , Blood Coagulation , COVID-19/complications , COVID-19/metabolism , COVID-19/virology , SARS-CoV-2 , Urinary Tract/pathology , Acute Kidney Injury/virology , Animals , Chlorocebus aethiops , Disease Models, Animal , Humans , Lung/pathology , Lung/virology , Male , Mesocricetus/virology , Transcriptome , Urinary Tract/virology , Vero Cells , Viral Load , Virus Replication
12.
iScience ; 24(10): 103120, 2021 Oct 22.
Article in English | MEDLINE | ID: covidwho-1401549

ABSTRACT

Newly emerging or re-emerging viral infections continue to cause significant morbidity and mortality every year worldwide, resulting in serious effects on both health and the global economy. Despite significant drug discovery research against dengue viruses (DENVs) and severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), no fully effective and specific drugs directed against these viruses have been discovered. Here, we examined the anti-DENV activity of tubercidin derivatives from a compound library from Hokkaido University and demonstrated that 5-hydroxymethyltubercidin (HMTU, HUP1108) possessed both potent anti-flavivirus and anti-coronavirus activities at submicromolar levels without significant cytotoxicity. Furthermore, HMTU inhibited viral RNA replication and specifically inhibited replication at the late stages of the SARS-CoV-2 infection process. Finally, we demonstrated that HMTU 5'-triphosphate inhibited RNA extension catalyzed by the viral RNA-dependent RNA polymerase. Our findings suggest that HMTU has the potential of serving as a lead compound for the development of a broad spectrum of antiviral agents, including SARS-CoV-2.

13.
Biochem Biophys Res Commun ; 577: 146-151, 2021 11 05.
Article in English | MEDLINE | ID: covidwho-1401239

ABSTRACT

The human lung cell A549 is susceptible to infection with a number of respiratory viruses. However, A549 cells are resistant to Severe Acute Respiratory Syndrome-Coronavirus-2 (SARS-CoV-2) infection in conventional submerged culture, and this would appear to be due to low expression levels of the SARS-CoV-2 entry receptor: angiotensin-converting enzyme-2 (ACE2). Here, we examined SARS-CoV-2 susceptibility to A549 cells after adaptation to air-liquid interface (ALI) culture. A549 cells in ALI culture yielded a layer of mucus on their apical surface, exhibited decreased expression levels of the proliferation marker KI-67 and intriguingly became susceptible to SARS-CoV-2 infection. We found that A549 cells increased the endogenous expression levels of ACE2 and TMPRSS2 following adaptation to ALI culture conditions. Camostat, a TMPRSS2 inhibitor, reduced SARS-CoV-2 infection in ALI-cultured A549 cells. These findings indicate that ALI culture switches the phenotype of A549 cells from resistance to susceptibility to SARS-CoV-2 infection through upregulation of ACE2 and TMPRSS2.


Subject(s)
Alveolar Epithelial Cells/virology , COVID-19/virology , Cell Culture Techniques/methods , SARS-CoV-2/physiology , A549 Cells , Alveolar Epithelial Cells/pathology , Cells, Cultured , Disease Susceptibility , Gene Expression Regulation, Neoplastic , Humans , Peptidyl-Dipeptidase A/genetics , Peptidyl-Dipeptidase A/metabolism , Serine Endopeptidases/genetics , Serine Endopeptidases/metabolism , Up-Regulation/genetics
14.
mBio ; 12(4): e0141521, 2021 08 31.
Article in English | MEDLINE | ID: covidwho-1370889

ABSTRACT

Severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) possesses a discriminative polybasic cleavage motif in its spike protein that is recognized by the host furin protease. Proteolytic cleavage activates the spike protein, thereby affecting both the cellular entry pathway and cell tropism of SARS-CoV-2. Here, we investigated the impact of the furin cleavage site on viral growth and pathogenesis using a hamster animal model infected with SARS-CoV-2 variants bearing mutations at the furin cleavage site (S gene mutants). In the airway tissues of hamsters, the S gene mutants exhibited low growth properties. In contrast to parental pathogenic SARS-CoV-2, hamsters infected with the S gene mutants showed no body weight loss and only a mild inflammatory response, thereby indicating the attenuated variant nature of S gene mutants. This transient infection was sufficient for inducing protective neutralizing antibodies that cross-react with different SARS-CoV-2 lineages. Consequently, hamsters inoculated with S gene mutants showed resistance to subsequent infection with both the parental strain and the currently emerging SARS-CoV-2 variants belonging to lineages B.1.1.7 and P.1. Taken together, our findings revealed that the loss of the furin cleavage site causes attenuation in the airway tissues of hamsters and highlighted the potential benefits of S gene mutants as potential immunogens. IMPORTANCE SARS-CoV-2 uses its spike protein to enter target cells. The spike protein is cleaved by a host protease, and this event facilitates viral entry and broadens cell tropism. In this study, we employed SARS-CoV-2 mutants lacking the S protein cleavage site and characterized their growth and pathogenicity using hamsters, a laboratory animal model for SARS-CoV-2 infection. These mutants exerted low pathogenicity but induced sufficient levels of neutralizing antibodies in hamsters, which protected hamsters from rechallenge with pathogenic clinical SARS-CoV-2 strains. These virus mutants may be used as protective immunogens against SARS-CoV-2 infection.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/pathology , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/genetics , Animals , Cell Line , Chlorocebus aethiops , Cross Reactions/immunology , Furin/metabolism , Humans , SARS-CoV-2/genetics , SARS-CoV-2/immunology , SARS-CoV-2/pathogenicity , Vaccines, Attenuated/immunology , Vero Cells , Virulence/genetics
15.
Immunity ; 54(10): 2385-2398.e10, 2021 10 12.
Article in English | MEDLINE | ID: covidwho-1370548

ABSTRACT

Potent neutralizing SARS-CoV-2 antibodies often target the spike protein receptor-binding site (RBS), but the variability of RBS epitopes hampers broad neutralization of multiple sarbecoviruses and drifted viruses. Here, using humanized mice, we identified an RBS antibody with a germline VH gene that potently neutralized SARS-related coronaviruses, including SARS-CoV and SARS-CoV-2 variants. X-ray crystallography revealed coordinated recognition by the heavy chain of non-RBS conserved sites and the light chain of RBS with a binding angle mimicking the angiotensin-converting enzyme 2 (ACE2) receptor. The minimum footprints in the hypervariable region of RBS contributed to the breadth of neutralization, which was enhanced by immunoglobulin G3 (IgG3) class switching. The coordinated binding resulted in broad neutralization of SARS-CoV and emerging SARS-CoV-2 variants of concern. Low-dose therapeutic antibody treatment in hamsters reduced the virus titers and morbidity during SARS-CoV-2 challenge. The structural basis for broad neutralizing activity may inform the design of a broad spectrum of therapeutics and vaccines.


Subject(s)
Broadly Neutralizing Antibodies/immunology , Cross Reactions/immunology , SARS-CoV-2/immunology , Animals , Betacoronavirus/immunology , Binding Sites, Antibody , Broadly Neutralizing Antibodies/chemistry , Broadly Neutralizing Antibodies/therapeutic use , COVID-19/prevention & control , COVID-19/therapy , COVID-19/virology , Cricetinae , Humans , Immunoglobulin Class Switching , Immunoglobulin Fab Fragments/chemistry , Immunoglobulin Fab Fragments/metabolism , Immunoglobulin G/chemistry , Immunoglobulin G/immunology , Mice , Protein Domains , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/metabolism
16.
Nat Immunol ; 22(7): 820-828, 2021 07.
Article in English | MEDLINE | ID: covidwho-1225511

ABSTRACT

Efficient immune responses against viral infection are determined by sufficient activation of nucleic acid sensor-mediated innate immunity1,2. Coronavirus disease 2019, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), remains an ongoing global pandemic. It is an urgent challenge to clarify the innate recognition mechanism to control this virus. Here we show that retinoic acid-inducible gene-I (RIG-I) sufficiently restrains SARS-CoV-2 replication in human lung cells in a type I/III interferon (IFN)-independent manner. RIG-I recognizes the 3' untranslated region of the SARS-CoV-2 RNA genome via the helicase domains, but not the C-terminal domain. This new mode of RIG-I recognition does not stimulate its ATPase, thereby aborting the activation of the conventional mitochondrial antiviral-signaling protein-dependent pathways, which is in accordance with lack of cytokine induction. Nevertheless, the interaction of RIG-I with the viral genome directly abrogates viral RNA-dependent RNA polymerase mediation of the first step of replication. Consistently, genetic ablation of RIG-I allows lung cells to produce viral particles that expressed the viral spike protein. By contrast, the anti-SARS-CoV-2 activity was restored by all-trans retinoic acid treatment through upregulation of RIG-I protein expression in primary lung cells derived from patients with chronic obstructive pulmonary disease. Thus, our findings demonstrate the distinctive role of RIG-I as a restraining factor in the early phase of SARS-CoV-2 infection in human lung cells.


Subject(s)
COVID-19/immunology , DEAD Box Protein 58/immunology , Lung/immunology , Receptors, Immunologic/immunology , SARS-CoV-2/immunology , A549 Cells , Animals , Cell Line , Cell Line, Tumor , Chlorocebus aethiops , Dogs , HEK293 Cells , Humans , Interferon Type I/immunology , Interferons/immunology , Lung/virology , Madin Darby Canine Kidney Cells , Pulmonary Disease, Chronic Obstructive/immunology , RNA-Dependent RNA Polymerase/immunology , Sf9 Cells , Signal Transduction/immunology , Vero Cells , Viral Proteins/immunology
17.
Sci Rep ; 11(1): 5376, 2021 03 08.
Article in English | MEDLINE | ID: covidwho-1123150

ABSTRACT

Although the spread of Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) has resulted in a worldwide pandemic, there are currently no virus-specific drugs that are fully effective against SARS-CoV-2. Only a limited number of human-derived cells are capable of supporting SARS-CoV-2 replication and the infectivity of SARS-CoV-2 in these cells remains poor. In contrast, monkey-derived Vero cells are highly susceptibility to infection with SARS-CoV-2, although they are not suitable for the study of antiviral effects by small molecules due to their limited capacity to metabolize drugs compared to human-derived cells. In this study, our goal was to generate a virus-susceptible human cell line that would be useful for the identification and testing of candidate drugs. Towards this end, we stably transfected human lung-derived MRC5 cells with a lentiviral vector encoding angiotensin-converting enzyme 2 (ACE2), the cellular receptor for SARS-CoV-2. Our results revealed that SARS-CoV-2 replicates efficiently in MRC5/ACE2 cells. Furthermore, viral RNA replication and progeny virus production were significantly reduced in response to administration of the replication inhibitor, remdesivir, in MRC5/ACE2 cells compared with Vero cells. We conclude that the MRC5/ACE2 cells will be important in developing specific anti-viral therapeutics and will assist in vaccine development to combat SARS-CoV-2 infections.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , Antiviral Agents/pharmacology , Cell Engineering , Drug Discovery , Models, Biological , SARS-CoV-2/physiology , Animals , Antiviral Agents/therapeutic use , COVID-19/drug therapy , Cell Line , Humans , SARS-CoV-2/drug effects , Viral Proteins/biosynthesis , Virus Replication/drug effects
18.
Viruses ; 13(3)2021 02 28.
Article in English | MEDLINE | ID: covidwho-1122331

ABSTRACT

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) utilizes host proteases, including a plasma membrane-associated transmembrane protease, serine 2 (TMPRSS2) to cleave and activate the virus spike protein to facilitate cellular entry. Although TMPRSS2 is a well-characterized type II transmembrane serine protease (TTSP), the role of other TTSPs on the replication of SARS-CoV-2 remains to be elucidated. Here, we have screened 12 TTSPs using human angiotensin-converting enzyme 2-expressing HEK293T (293T-ACE2) cells and Vero E6 cells and demonstrated that exogenous expression of TMPRSS11D and TMPRSS13 enhanced cellular uptake and subsequent replication of SARS-CoV-2. In addition, SARS-CoV-1 and SARS-CoV-2 share the same TTSPs in the viral entry process. Our study demonstrates the impact of host TTSPs on infection of SARS-CoV-2, which may have implications for cell and tissue tropism, for pathogenicity, and potentially for vaccine development.


Subject(s)
COVID-19/metabolism , COVID-19/virology , Membrane Proteins/metabolism , SARS-CoV-2/metabolism , Serine Endopeptidases/metabolism , Serine Proteases/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Angiotensin-Converting Enzyme 2/metabolism , Animals , Chlorocebus aethiops , HEK293 Cells , Humans , Vero Cells , Virus Internalization
19.
MMWR Morb Mortal Wkly Rep ; 70(8): 280-282, 2021 Feb 26.
Article in English | MEDLINE | ID: covidwho-1102701

ABSTRACT

The first laboratory-confirmed cases of coronavirus disease 2019 (COVID-19), the illness caused by SARS-CoV-2, in Zambia were detected in March 2020 (1). Beginning in July, the number of confirmed cases began to increase rapidly, first peaking during July-August, and then declining in September and October (Figure). After 3 months of relatively low case counts, COVID-19 cases began rapidly rising throughout the country in mid-December. On December 18, 2020, South Africa published the genome of a SARS-CoV-2 variant strain with several mutations that affect the spike protein (2). The variant included a mutation (N501Y) associated with increased transmissibility.†,§ SARS-CoV-2 lineages with this mutation have rapidly expanded geographically.¶,** The variant strain (PANGO [Phylogenetic Assignment of Named Global Outbreak] lineage B.1.351††) was first detected in the Eastern Cape Province of South Africa from specimens collected in early August, spread within South Africa, and appears to have displaced the majority of other SARS-CoV-2 lineages circulating in that country (2). As of January 10, 2021, eight countries had reported cases with the B.1.351 variant. In Zambia, the average number of daily confirmed COVID-19 cases increased 16-fold, from 44 cases during December 1-10 to 700 during January 1-10, after detection of the B.1.351 variant in specimens collected during December 16-23. Zambia is a southern African country that shares substantial commerce and tourism linkages with South Africa, which might have contributed to the transmission of the B.1.351 variant between the two countries.


Subject(s)
COVID-19/diagnosis , COVID-19/virology , SARS-CoV-2/genetics , Adult , COVID-19/epidemiology , COVID-19 Nucleic Acid Testing , Female , Humans , Male , Middle Aged , SARS-CoV-2/isolation & purification , Zambia/epidemiology
20.
PLoS Pathog ; 17(1): e1009233, 2021 01.
Article in English | MEDLINE | ID: covidwho-1040062

ABSTRACT

The spike (S) protein of Severe Acute Respiratory Syndrome-Coronavirus-2 (SARS-CoV-2) binds to a host cell receptor which facilitates viral entry. A polybasic motif detected at the cleavage site of the S protein has been shown to broaden the cell tropism and transmissibility of the virus. Here we examine the properties of SARS-CoV-2 variants with mutations at the S protein cleavage site that undergo inefficient proteolytic cleavage. Virus variants with S gene mutations generated smaller plaques and exhibited a more limited range of cell tropism compared to the wild-type strain. These alterations were shown to result from their inability to utilize the entry pathway involving direct fusion mediated by the host type II transmembrane serine protease, TMPRSS2. Notably, viruses with S gene mutations emerged rapidly and became the dominant SARS-CoV-2 variants in TMPRSS2-deficient cells including Vero cells. Our study demonstrated that the S protein polybasic cleavage motif is a critical factor underlying SARS-CoV-2 entry and cell tropism. As such, researchers should be alert to the possibility of de novo S gene mutations emerging in tissue-culture propagated virus strains.


Subject(s)
SARS-CoV-2/genetics , Serine Endopeptidases/deficiency , Spike Glycoprotein, Coronavirus/genetics , Amino Acid Sequence , Animals , Caco-2 Cells , Cell Line , Chlorocebus aethiops , HEK293 Cells , Humans , Mutation , SARS-CoV-2/classification , SARS-CoV-2/growth & development , SARS-CoV-2/physiology , Sequence Alignment , Serial Passage , Vero Cells , Viral Tropism
SELECTION OF CITATIONS
SEARCH DETAIL