Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
1.
EuropePMC; 2022.
Preprint in English | EuropePMC | ID: ppcovidwho-336938

ABSTRACT

The impact of vaccination on SARS-CoV-2 infectiousness is not well understood. We compared longitudinal viral shedding dynamics in unvaccinated and fully vaccinated adults. SARS-CoV-2-infected adults were enrolled within 5 days of symptom onset and nasal specimens were self-collected daily for two weeks and intermittently for an additional two weeks. SARS-CoV-2 RNA load and infectious virus were analyzed relative to symptom onset stratified by vaccination status. We tested 1080 nasal specimens from 52 unvaccinated adults enrolled in the pre-Delta period and 32 fully vaccinated adults with predominantly Delta infections. While we observed no differences by vaccination status in maximum RNA levels, maximum infectious titers and the median duration of viral RNA shedding, the rate of decay from the maximum RNA load was faster among vaccinated;maximum infectious titers and maximum RNA levels were highly correlated. Furthermore, amongst participants with infectious virus, median duration of infectious virus detection was reduced from 7.5 days (IQR: 6.0-9.0) in unvaccinated participants to 6 days (IQR: 5.0-8.0) in those vaccinated (P=0.02). Accordingly, the odds of shedding infectious virus from days 6 to 12 post-onset were lower among vaccinated participants than unvaccinated participants (OR 0.42 95% CI 0.19-0.89). These results indicate that vaccination had reduced the probability of shedding infectious virus after 5 days from symptom onset. Significance statement We present longitudinal data on the magnitude, duration and decay rate of viral RNA and the magnitude and duration of infectious virus in nasal specimens from vaccinated and unvaccinated participants. On average, vaccinated participants (infected with the highly transmissible Delta variant) showed a lower probability of having infectious virus after 5 days of symptoms compared to unvaccinated participants (infected with mostly pre-delta viral lineages), even though both groups had a similar magnitude of infectious virus at or near the peak. These data help improve our understanding of the duration of the infectious period when infection occurs following vaccination and serves as a reference for future studies of shedding dynamics following infections with novel variants of concern.

2.
PLoS One ; 17(3): e0264260, 2022.
Article in English | MEDLINE | ID: covidwho-1793519

ABSTRACT

BACKGROUND: Reports on medium and long-term sequelae of SARS-CoV-2 infections largely lack quantification of incidence and relative risk. We describe the rationale and methods of the Innovative Support for Patients with SARS-CoV-2 Registry (INSPIRE) that combines patient-reported outcomes with data from digital health records to understand predictors and impacts of SARS-CoV-2 infection. METHODS: INSPIRE is a prospective, multicenter, longitudinal study of individuals with symptoms of SARS-CoV-2 infection in eight regions across the US. Adults are eligible for enrollment if they are fluent in English or Spanish, reported symptoms suggestive of acute SARS-CoV-2 infection, and if they are within 42 days of having a SARS-CoV-2 viral test (i.e., nucleic acid amplification test or antigen test), regardless of test results. Recruitment occurs in-person, by phone or email, and through online advertisement. A secure online platform is used to facilitate the collation of consent-related materials, digital health records, and responses to self-administered surveys. Participants are followed for up to 18 months, with patient-reported outcomes collected every three months via survey and linked to concurrent digital health data; follow-up includes no in-person involvement. Our planned enrollment is 4,800 participants, including 2,400 SARS-CoV-2 positive and 2,400 SARS-CoV-2 negative participants (as a concurrent comparison group). These data will allow assessment of longitudinal outcomes from SARS-CoV-2 infection and comparison of the relative risk of outcomes in individuals with and without infection. Patient-reported outcomes include self-reported health function and status, as well as clinical outcomes including health system encounters and new diagnoses. RESULTS: Participating sites obtained institutional review board approval. Enrollment and follow-up are ongoing. CONCLUSIONS: This study will characterize medium and long-term sequelae of SARS-CoV-2 infection among a diverse population, predictors of sequelae, and their relative risk compared to persons with similar symptomatology but without SARS-CoV-2 infection. These data may inform clinical interventions for individuals with sequelae of SARS-CoV-2 infection.


Subject(s)
COVID-19/complications , COVID-19/therapy , Palliative Care , Adolescent , Adult , Aged , Aged, 80 and over , COVID-19/diagnosis , COVID-19/epidemiology , Case-Control Studies , Cohort Studies , Female , Humans , Longitudinal Studies , Male , Middle Aged , Palliative Care/methods , Palliative Care/organization & administration , Patient Reported Outcome Measures , Prognosis , Registries , SARS-CoV-2/physiology , Social Determinants of Health , Therapies, Investigational/methods , Time Factors , Young Adult
3.
EuropePMC; 2022.
Preprint in English | EuropePMC | ID: ppcovidwho-332811

ABSTRACT

Wearing a facemask can help to decrease the transmission of COVID-19. We investigated self-reported mask use among subjects aged 18 years and older participating in the COVID-19 Community Research Partnership (CRP), a prospective longitudinal COVIS-19 surveillance study. We included those participants who completed ≥5 daily surveys each month from December 1, 2020 through August 31, 2021. Mask use was defined as self-reported use of a face mask or face covering on every interaction with others outside the household within a distance of less than 6 feet. Participants were considered vaccinated if they reported receiving ≥1 COVID-19 vaccine dose. Participants (n=17,522) were 91% non-Hispanic White, 68% female, median age 57 years, 26% healthcare workers, with 95% self-reported receiving ≥1 COVID-19 vaccine dose through August;mean daily survey response was 85%. Mask use was higher among vaccinated than unvaccinated participants across the study period, regardless of the month of the first dose. Mask use remained relatively stable from December 2020 through April (range 71–80% unvaccinated;86–93% vaccinated) and declined in both groups beginning in mid-May 2021 to 34% and 42% respectively in June 2021;mask use has increased again since July 2021. Mask use by all was lower during weekends and on Christmas and Easter, regardless of vaccination status. Independent predictors of higher mask use were vaccination, age ≥65 years, female sex, racial or ethnic minority group, and healthcare worker occupation, whereas a history of self-reported prior COVID-19 illness was associated with lower use. Trial Registration The COVID-19 Community Research Partnership is listed in clinicaltrials.gov ( NCT04342884 ).

4.
EuropePMC; 2022.
Preprint in English | EuropePMC | ID: ppcovidwho-329462

ABSTRACT

A bstract Importance Although COVID-19 vaccines protect against infection and severe disease, the role of vaccination in preventing prolonged symptoms in those with subsequent infection is unclear. Objective To determine differences in symptoms stratified by prior vaccination reported by healthcare personnel (HCP) 6 weeks after onset of COVID-19, and whether there were differences in timing of return to work. Design Nested cohort study within a multicenter vaccine effectiveness study. HCP with COVID-19 between December 2020 and August 2021 were followed up 6 weeks after illness onset. Setting Health systems in 12 U.S. states. Participants HCP participating in a vaccine effectiveness study were eligible for inclusion if they had confirmed COVID-19 with either verified mRNA vaccination (symptom onset ≥14 days after two doses) or no prior COVID-19 vaccination. Among 681 eligible participants, 419 (61%) completed a follow-up survey approximately 6 weeks after illness onset. Exposures Two doses of a COVID-19 mRNA vaccine compared with no COVID-19 vaccine. Main outcomes and measures Presence of symptoms 6 weeks after onset of COVID-19 illness and days to return to work after COVID-19 illness. Results Among 419 HCP with confirmed COVID-19, 298 (71%) reported one or more COVID-like symptoms 6 weeks after illness onset, with a lower prevalence among vaccinated participants (60.6%) compared with unvaccinated participants (60.6% vs. 79.1%;aRR 0.70, 95% CI 0.58-0.84). Vaccinated HCP returned to work a median 2.0 days (95% CI 1.0–3.0) sooner than unvaccinated HCP (aHR 1.37;95% CI, 1.04–1.79). Conclusions A history of two doses of COVID-19 mRNA vaccine among HCP with COVID-19 illness was associated with decreased risk of COVID-like symptoms at 6 weeks and earlier to return to work. Vaccination is associated with improved recovery from COVID-19, in addition to preventing symptomatic infection. KEY POINTS Question Does vaccination lead to improved recovery of symptoms and return to work following COVID-19? Findings In this nested cohort study of healthcare personnel, participants with COVID-19 who had received two doses of a COVID-19 mRNA vaccine were less likely to report symptoms 6 weeks after illness onset than participants with COVID-19 who were unvaccinated. Return to work was sooner if previously vaccinated. Meaning Vaccination is associated with improved recovery from COVID-19, in addition to prevention of infection and disease.

5.
MMWR Morb Mortal Wkly Rep ; 71(8): 293-298, 2022 Feb 25.
Article in English | MEDLINE | ID: covidwho-1704437

ABSTRACT

Isolation is recommended during acute infection with SARS-CoV-2, the virus that causes COVID-19, but the duration of infectiousness varies among individual persons. Rapid antigen test results have been correlated with detection of viable virus (1-3) and might inform isolation guidance, but data are limited for the recently emerged SARS-CoV-2 B.1.1.529 (Omicron) variant. On January 5, 2022, the Yukon-Kuskokwim Health Corporation (YKHC) recommended that persons with SARS-CoV-2 infection isolate for 10 days after symptom onset (or, for asymptomatic persons, 10 days after a positive nucleic acid amplification or antigen test result). However, isolation could end after 5-9 days if symptoms were resolving or absent, fever was absent for ≥24 hours without fever-reducing medications, and an Abbott BinaxNOW COVID-19 Ag (BinaxNOW) rapid antigen test result was negative. Antigen test results and associated individual characteristics were analyzed among 3,502 infections reported to YKHC during January 1-February 9, 2022. After 5-9 days, 396 of 729 persons evaluated (54.3%) had a positive antigen test result, with a declining percentage positive over time. In a multivariable model, a positive antigen test result was more likely after 5 days compared with 9 days (adjusted odds ratio [aOR] = 6.39) or after symptomatic infection (aOR = 9.63), and less likely after previous infection (aOR = 0.30), receipt of a primary COVID-19 vaccination series (aOR = 0.60), or after both previous infection and receipt of a primary COVID-19 vaccination series (aOR = 0.17). Antigen tests might be a useful tool to guide recommendations for isolation after SARS-CoV-2 infection. During the 10 days after infection, persons might be infectious to others and are recommended to wear a well-fitting mask when around others, even if ending isolation after 5 days.


Subject(s)
COVID-19 Serological Testing , COVID-19/diagnosis , Quarantine , SARS-CoV-2 , Adolescent , Adult , Alaska/epidemiology , Alaskan Natives , COVID-19/prevention & control , COVID-19/transmission , Child , Child, Preschool , Female , Health Planning Guidelines , Humans , Infant , Male , Middle Aged , Young Adult
6.
Open Forum Infect Dis ; 9(3): ofab664, 2022 Mar.
Article in English | MEDLINE | ID: covidwho-1692168

ABSTRACT

We quantify antibody and memory B-cell responses to severe acute respiratory syndrome coronavirus 2 at 6 and 12 months postinfection among 7 unvaccinated US coronavirus disease 2019 cases. All had detectable S-specific memory B cells and immunoglobulin G at both time points, with geometric mean titers of 117.2 BAU/mL and 84.0 BAU/mL at 6 and 12 months, respectively.

7.
BMC Med ; 20(1): 50, 2022 02 04.
Article in English | MEDLINE | ID: covidwho-1690914

ABSTRACT

BACKGROUND: A substantial portion of people with COVID-19 subsequently experience lasting symptoms including fatigue, shortness of breath, and neurological complaints such as cognitive dysfunction many months after acute infection. Emerging evidence suggests that this condition, commonly referred to as long COVID but also known as post-acute sequelae of SARS-CoV-2 infection (PASC) or post-COVID-19 condition, could become a significant global health burden. MAIN TEXT: While the number of studies investigating the post-COVID-19 condition is increasing, there is no agreement on how this new disease should be defined and diagnosed in clinical practice and what relevant outcomes to measure. There is an urgent need to optimise and standardise outcome measures for this important patient group both for clinical services and for research and to allow comparing and pooling of data. CONCLUSIONS: A Core Outcome Set for post-COVID-19 condition should be developed in the shortest time frame possible, for improvement in data quality, harmonisation, and comparability between different geographical locations. We call for a global initiative, involving all relevant partners, including, but not limited to, healthcare professionals, researchers, methodologists, patients, and caregivers. We urge coordinated actions aiming to develop a Core Outcome Set (COS) for post-COVID-19 condition in both the adult and paediatric populations.


Subject(s)
COVID-19 , Adult , COVID-19/complications , Child , Disease Progression , Humans , Outcome Assessment, Health Care , SARS-CoV-2
8.
EuropePMC;
Preprint in English | EuropePMC | ID: ppcovidwho-327060

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection elicits an antibody response that targets several viral proteins including spike (S) and nucleocapsid (N);S is the major target of neutralizing antibodies. Here, we assess levels of anti-N binding antibodies and anti-S neutralizing antibodies in unvaccinated children compared with unvaccinated older adults following infection. Specifically, we examine neutralization and anti-N binding by sera collected up to 52 weeks following SARS-CoV-2 infection in children and compare these to a cohort of adults, including older adults, most of whom had mild infections that did not require hospitalization. Neutralizing antibody titers were lower in children than adults early after infection, but by 6 months titers were similar between age groups. The neutralizing activity of the children's sera decreased modestly from one to six months;a pattern that was not significantly different from that observed in adults. However, infection of children induced much lower levels of anti-N antibodies than in adults, and levels of these anti-N antibodies decreased more rapidly in children than in adults, including older adults. These results highlight age-related differences in the antibody responses to SARS-CoV-2 proteins and, as vaccines for children are introduced, may provide comparator data for the longevity of infection-elicited and vaccination-induced neutralizing antibody responses.

9.
J Gen Intern Med ; 37(7): 1786-1788, 2022 May.
Article in English | MEDLINE | ID: covidwho-1681686

Subject(s)
COVID-19 , Humans , SARS-CoV-2
10.
JAMA Netw Open ; 5(2): e2147053, 2022 02 01.
Article in English | MEDLINE | ID: covidwho-1669328

ABSTRACT

Importance: New symptoms and conditions can develop following SARS-CoV-2 infection. Whether they occur more frequently among persons with SARS-CoV-2 infection compared with those without is unclear. Objective: To compare the prevalence of new diagnoses of select symptoms and conditions between 31 and 150 days after testing among persons who tested positive vs negative for SARS-CoV-2. Design, Setting, and Participants: This cohort study analyzed aggregated electronic health record data from 40 health care systems, including 338 024 persons younger than 20 years and 1 790 886 persons aged 20 years or older who were tested for SARS-CoV-2 during March to December 2020 and who had medical encounters between 31 and 150 days after testing. Main Outcomes and Measures: International Statistical Classification of Diseases, Tenth Revision, Clinical Modification codes were used to capture new symptoms and conditions that were recorded 31 to 150 days after a SARS-CoV-2 test but absent in the 18 months to 7 days prior to testing. The prevalence of new symptoms and conditions was compared between persons with positive and negative SARS-CoV-2 tests stratified by age (20 years or older and young than 20 years) and care setting (nonhospitalized, hospitalized, or hospitalized and ventilated). Results: A total of 168 701 persons aged 20 years or older and 26 665 younger than 20 years tested positive for SARS-CoV-2, and 1 622 185 persons aged 20 years or older and 311 359 younger than 20 years tested negative. Shortness of breath was more common among persons with a positive vs negative test result among hospitalized patients (≥20 years: prevalence ratio [PR], 1.89 [99% CI, 1.79-2.01]; <20 years: PR, 1.72 [99% CI, 1.17-2.51]). Shortness of breath was also more common among nonhospitalized patients aged 20 years or older with a positive vs negative test result (PR, 1.09 [99% CI, 1.05-1.13]). Among hospitalized persons aged 20 years or older, the prevalence of new fatigue (PR, 1.35 [99% CI, 1.27-1.44]) and type 2 diabetes (PR, 2.03 [99% CI, 1.87-2.19]) was higher among those with a positive vs a negative test result. Among hospitalized persons younger than 20 years, the prevalence of type 2 diabetes (PR, 2.14 [99% CI, 1.13-4.06]) was higher among those with a positive vs a negative test result; however, the prevalence difference was less than 1%. Conclusions and Relevance: In this cohort study, among persons hospitalized after a positive SARS-CoV-2 test result, diagnoses of certain symptoms and conditions were higher than among those with a negative test result. Health care professionals should be aware of symptoms and conditions that may develop after SARS-CoV-2 infection, particularly among those hospitalized after diagnosis.


Subject(s)
COVID-19/physiopathology , Symptom Assessment/statistics & numerical data , Adolescent , Adult , Age Factors , Aged , Aged, 80 and over , COVID-19/epidemiology , Child , Child, Preschool , Cohort Studies , Female , Humans , Infant , Infant, Newborn , Male , Middle Aged , Prevalence , SARS-CoV-2 , Socioeconomic Factors , Time Factors , Young Adult
11.
MMWR Morb Mortal Wkly Rep ; 71(2): 59-65, 2022 Jan 14.
Article in English | MEDLINE | ID: covidwho-1622894

ABSTRACT

The COVID-19 pandemic has disproportionately affected people with diabetes, who are at increased risk of severe COVID-19.* Increases in the number of type 1 diabetes diagnoses (1,2) and increased frequency and severity of diabetic ketoacidosis (DKA) at the time of diabetes diagnosis (3) have been reported in European pediatric populations during the COVID-19 pandemic. In adults, diabetes might be a long-term consequence of SARS-CoV-2 infection (4-7). To evaluate the risk for any new diabetes diagnosis (type 1, type 2, or other diabetes) >30 days† after acute infection with SARS-CoV-2 (the virus that causes COVID-19), CDC estimated diabetes incidence among patients aged <18 years (patients) with diagnosed COVID-19 from retrospective cohorts constructed using IQVIA health care claims data from March 1, 2020, through February 26, 2021, and compared it with incidence among patients matched by age and sex 1) who did not receive a COVID-19 diagnosis during the pandemic, or 2) who received a prepandemic non-COVID-19 acute respiratory infection (ARI) diagnosis. Analyses were replicated using a second data source (HealthVerity; March 1, 2020-June 28, 2021) that included patients who had any health care encounter possibly related to COVID-19. Among these patients, diabetes incidence was significantly higher among those with COVID-19 than among those 1) without COVID-19 in both databases (IQVIA: hazard ratio [HR] = 2.66, 95% CI = 1.98-3.56; HealthVerity: HR = 1.31, 95% CI = 1.20-1.44) and 2) with non-COVID-19 ARI in the prepandemic period (IQVIA, HR = 2.16, 95% CI = 1.64-2.86). The observed increased risk for diabetes among persons aged <18 years who had COVID-19 highlights the importance of COVID-19 prevention strategies, including vaccination, for all eligible persons in this age group,§ in addition to chronic disease prevention and management. The mechanism of how SARS-CoV-2 might lead to incident diabetes is likely complex and could differ by type 1 and type 2 diabetes. Monitoring for long-term consequences, including signs of new diabetes, following SARS-CoV-2 infection is important in this age group.


Subject(s)
COVID-19/complications , Diabetes Mellitus/diagnosis , Diabetes Mellitus/epidemiology , Diabetic Ketoacidosis/diagnosis , Diabetic Ketoacidosis/epidemiology , SARS-CoV-2 , Adolescent , Child , Child, Preschool , Cohort Studies , Databases, Factual , Female , Humans , Incidence , Infant , Male , Retrospective Studies , Risk , United States/epidemiology
13.
Open forum infectious diseases ; 8(Suppl 1):S805-S806, 2021.
Article in English | EuropePMC | ID: covidwho-1564154

ABSTRACT

Background Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection elicits antibodies (Abs) that bind several viral proteins such as the spike entry protein and the abundant nucleocapsid (N) protein. We examined convalescent sera collected through 6 months (~24wks) post-SARS-CoV-2 infection in children to evaluate changes in neutralization potency and N-binding. Methods Outpatient, hospitalized, and community recruited volunteers < 18 years with COVID-19 were enrolled in a longitudinal study at Seattle Children’s Hospital. Analysis includes symptomatic and asymptomatic children with laboratory-confirmed SARS-CoV-2 infection who provided blood samples at approximately 4wks (range: 2-18wks, IQR:4-8wks) and 24 wks (range: 23-35wks, IQR:25-27wks) after diagnosis. We measured neutralizing Ab using an in-house pseudoneutralization assay and anti-N binding Ab using the Abbott Architect assay. Results Of 32 children enrolled between April 2020 and January 2021, 27 had no underlying immunocompromised state and 25 of these 27 children had symptomatic disease. Ten of 27 had a > 2-fold decrease neutralization titers between 4 and 24wks (most were < 10-fold);12 had < 2-fold change;and 5 had neutralization titers that increased > 2-fold over time (Fig. 1A). All but one of these 27 children had detectable neutralizing activity at 24wks. Anti-N Abs were assessed for 25 children at 4wks and 17 children at 24wks (data pending for 14 samples);all children with paired samples had a > 1.75-fold Abbott index reduction at 24wks, and 5 children had no detectable anti-N Abs by 24wks (Fig. 2A). An additional 5 children with symptomatic disease had complicating immunosuppression or multiple blood transfusions;2 had decreasing neutralizing titers, 2 increased, and 1 had no change (Fig. 1B). Anti-N Abs were undetectable for one child by 24wks (data pending for 4 samples) (Fig. 2B). No participants received COVID-19 vaccine. Figure 1. Pseusoneutralization titers in children over time. Figure 2. Nucleocapsid-binding antibody titers in children over time. Conclusion We show neutralizing Abs wane to a small degree over 24wks post-SARS-CoV-2 infection and remain detectable in most children. In contrast, anti-N Abs decreased, becoming undetectable in some children by 24wks. These findings add to understanding of the natural history of SARS-CoV-2 immunity in children. * This study was supported by CDC BAA75D301-20-R-67897 Disclosures Jesse Bloom, PhD, Flagship Labs 77 (Consultant)Moderna (Consultant) Janet A. Englund, MD, AstraZeneca (Consultant, Grant/Research Support)GlaxoSmithKline (Research Grant or Support)Meissa Vaccines (Consultant)Pfizer (Research Grant or Support)Sanofi Pasteur (Consultant)Teva Pharmaceuticals (Consultant)

14.
MMWR Morb Mortal Wkly Rep ; 70(36): 1235-1241, 2021 Sep 10.
Article in English | MEDLINE | ID: covidwho-1404132

ABSTRACT

Long-term symptoms often associated with COVID-19 (post-COVID conditions or long COVID) are an emerging public health concern that is not well understood. Prevalence of post-COVID conditions has been reported among persons who have had COVID-19 (range = 5%-80%), with differences possibly related to different study populations, case definitions, and data sources (1). Few studies of post-COVID conditions have comparisons with the general population of adults with negative test results for SARS-CoV-2, the virus that causes COVID-19, limiting ability to assess background symptom prevalence (1). CDC used a nonprobability-based Internet panel established by Porter Novelli Public Services* to administer a survey to a nationwide sample of U.S. adults aged ≥18 years to compare the prevalence of long-term symptoms (those lasting >4 weeks since onset) among persons who self-reported ever receiving a positive SARS-CoV-2 test result with the prevalence of similar symptoms among persons who reported always receiving a negative test result. The weighted prevalence of ever testing positive for SARS-CoV-2 was 22.2% (95% confidence interval [CI] = 20.6%-23.8%). Approximately two thirds of respondents who had received a positive test result experienced long-term symptoms often associated with SARS-CoV-2 infection. Compared with respondents who received a negative test result, those who received a positive test result reported a significantly higher prevalence of any long-term symptom (65.9% versus 42.9%), fatigue (22.5% versus 12.0%), change in sense of smell or taste (17.3% versus 1.7%), shortness of breath (15.5% versus 5.2%), cough (14.5% versus 4.9%), headache (13.8% versus 9.9%), and persistence (>4 weeks) of at least one initially occurring symptom (76.2% versus 69.6%). Compared with respondents who received a negative test result, a larger proportion of those who received a positive test result reported believing that receiving a COVID-19 vaccine made their long-term symptoms better (28.7% versus 15.7%). Efforts to address post-COVID conditions should include helping health care professionals recognize the most common post-COVID conditions and optimize care for patients with persisting symptoms, including messaging on potential benefits of COVID-19 vaccination.


Subject(s)
COVID-19 Testing/statistics & numerical data , COVID-19/complications , COVID-19/diagnosis , SARS-CoV-2/isolation & purification , Adolescent , Adult , Aged , COVID-19/epidemiology , Female , Humans , Male , Middle Aged , United States/epidemiology , Young Adult
15.
Clin Infect Dis ; 73(Suppl 1): S5-S16, 2021 07 15.
Article in English | MEDLINE | ID: covidwho-1364773

ABSTRACT

BACKGROUND: Late sequelae of COVID-19 have been reported; however, few studies have investigated the time course or incidence of late new COVID-19-related health conditions (post-COVID conditions) after COVID-19 diagnosis. Studies distinguishing post-COVID conditions from late conditions caused by other etiologies are lacking. Using data from a large administrative all-payer database, we assessed type, association, and timing of post-COVID conditions following COVID-19 diagnosis. METHODS: Using the Premier Healthcare Database Special COVID-19 Release (release date, 20 October 2020) data, during March-June 2020, 27 589 inpatients and 46 857 outpatients diagnosed with COVID-19 (case-patients) were 1:1 matched with patients without COVID-19 through the 4-month follow-up period (control-patients) by using propensity score matching. In this matched-cohort study, adjusted ORs were calculated to assess for late conditions that were more common in case-patients than control-patients. Incidence proportion was calculated for conditions that were more common in case-patients than control-patients during 31-120 days following a COVID-19 encounter. RESULTS: During 31-120 days after an initial COVID-19 inpatient hospitalization, 7.0% of adults experienced ≥1 of 5 post-COVID conditions. Among adult outpatients with COVID-19, 7.7% experienced ≥1 of 10 post-COVID conditions. During 31-60 days after an initial outpatient encounter, adults with COVID-19 were 2.8 times as likely to experience acute pulmonary embolism as outpatient control-patients and also more likely to experience a range of conditions affecting multiple body systems (eg, nonspecific chest pain, fatigue, headache, and respiratory, nervous, circulatory, and gastrointestinal symptoms) than outpatient control-patients. CONCLUSIONS: These findings add to the evidence of late health conditions possibly related to COVID-19 in adults following COVID-19 diagnosis and can inform healthcare practice and resource planning for follow-up COVID-19 care.


Subject(s)
COVID-19 , Outpatients , Adult , COVID-19 Testing , Cohort Studies , Humans , Inpatients , SARS-CoV-2 , United States/epidemiology
16.
J Community Health ; 47(1): 71-78, 2022 02.
Article in English | MEDLINE | ID: covidwho-1353711

ABSTRACT

Prevention behaviors represent important public health tools to limit spread of SARS-CoV-2. Adherence with recommended public health prevention behaviors among 20000 + members of a COVID-19 syndromic surveillance cohort from the mid-Atlantic and southeastern United States was assessed via electronic survey following the 2020 Thanksgiving and winter holiday (WH) seasons. Respondents were predominantly non-Hispanic Whites (90%), female (60%), and ≥ 50 years old (59%). Non-household members (NHM) were present at 47.1% of Thanksgiving gatherings and 69.3% of WH gatherings. Women were more likely than men to gather with NHM (p < 0.0001). Attending gatherings with NHM decreased with older age (Thanksgiving: 60.0% of participants aged < 30 years to 36.3% aged ≥ 70 years [p-trend < 0.0001]; WH: 81.6% of those < 30 years to 61.0% of those ≥ 70 years [p-trend < 0.0001]). Non-Hispanic Whites were more likely to gather with NHM than were Hispanics or non-Hispanic Blacks (p < 0.0001). Mask wearing, reported by 37.3% at Thanksgiving and 41.9% during the WH, was more common among older participants, non-Hispanic Blacks, and Hispanics when gatherings included NHM. In this survey, most people did not fully adhere to recommended public health safety behaviors when attending holiday gatherings. It remains unknown to what extent failure to observe these recommendations may have contributed to the COVID-19 surges observed following Thanksgiving and the winter holidays in the United States.


Subject(s)
COVID-19 , Holidays , Adult , Aged , Female , Humans , Male , Middle Aged , SARS-CoV-2 , Seasons , Surveys and Questionnaires , United States
17.
MMWR Morb Mortal Wkly Rep ; 70(17): 644-650, 2021 Apr 30.
Article in English | MEDLINE | ID: covidwho-1207944

ABSTRACT

As of April 19, 2021, 21.6 million COVID-19 cases had been reported among U.S. adults, most of whom had mild or moderate disease that did not require hospitalization (1). Health care needs in the months after COVID-19 diagnosis among nonhospitalized adults have not been well studied. To better understand longer-term health care utilization and clinical characteristics of nonhospitalized adults after COVID-19 diagnosis, CDC and Kaiser Permanente Georgia (KPGA) analyzed electronic health record (EHR) data from health care visits in the 28-180 days after a diagnosis of COVID-19 at an integrated health care system. Among 3,171 nonhospitalized adults who had COVID-19, 69% had one or more outpatient visits during the follow-up period of 28-180-days. Compared with patients without an outpatient visit, a higher percentage of those who did have an outpatient visit were aged ≥50 years, were women, were non-Hispanic Black, and had underlying health conditions. Among adults with outpatient visits, 68% had a visit for a new primary diagnosis, and 38% had a new specialist visit. Active COVID-19 diagnoses* (10%) and symptoms potentially related to COVID-19 (3%-7%) were among the top 20 new visit diagnoses; rates of visits for these diagnoses declined from 2-24 visits per 10,000 person-days 28-59 days after COVID-19 diagnosis to 1-4 visits per 10,000 person-days 120-180 days after diagnosis. The presence of diagnoses of COVID-19 and related symptoms in the 28-180 days following acute illness suggests that some nonhospitalized adults, including those with asymptomatic or mild acute illness, likely have continued health care needs months after diagnosis. Clinicians and health systems should be aware of post-COVID conditions among patients who are not initially hospitalized for acute COVID-19 disease.


Subject(s)
COVID-19/complications , COVID-19/therapy , Delivery of Health Care, Integrated , Patient Acceptance of Health Care/statistics & numerical data , Adolescent , Adult , Aged , Ambulatory Care/statistics & numerical data , COVID-19/diagnosis , COVID-19/epidemiology , Female , Georgia/epidemiology , Humans , Male , Middle Aged , Time Factors , Young Adult
18.
Clin Infect Dis ; 73(Suppl 1): S5-S16, 2021 07 15.
Article in English | MEDLINE | ID: covidwho-1205578

ABSTRACT

BACKGROUND: Late sequelae of COVID-19 have been reported; however, few studies have investigated the time course or incidence of late new COVID-19-related health conditions (post-COVID conditions) after COVID-19 diagnosis. Studies distinguishing post-COVID conditions from late conditions caused by other etiologies are lacking. Using data from a large administrative all-payer database, we assessed type, association, and timing of post-COVID conditions following COVID-19 diagnosis. METHODS: Using the Premier Healthcare Database Special COVID-19 Release (release date, 20 October 2020) data, during March-June 2020, 27 589 inpatients and 46 857 outpatients diagnosed with COVID-19 (case-patients) were 1:1 matched with patients without COVID-19 through the 4-month follow-up period (control-patients) by using propensity score matching. In this matched-cohort study, adjusted ORs were calculated to assess for late conditions that were more common in case-patients than control-patients. Incidence proportion was calculated for conditions that were more common in case-patients than control-patients during 31-120 days following a COVID-19 encounter. RESULTS: During 31-120 days after an initial COVID-19 inpatient hospitalization, 7.0% of adults experienced ≥1 of 5 post-COVID conditions. Among adult outpatients with COVID-19, 7.7% experienced ≥1 of 10 post-COVID conditions. During 31-60 days after an initial outpatient encounter, adults with COVID-19 were 2.8 times as likely to experience acute pulmonary embolism as outpatient control-patients and also more likely to experience a range of conditions affecting multiple body systems (eg, nonspecific chest pain, fatigue, headache, and respiratory, nervous, circulatory, and gastrointestinal symptoms) than outpatient control-patients. CONCLUSIONS: These findings add to the evidence of late health conditions possibly related to COVID-19 in adults following COVID-19 diagnosis and can inform healthcare practice and resource planning for follow-up COVID-19 care.


Subject(s)
COVID-19 , Outpatients , Adult , COVID-19 Testing , Cohort Studies , Humans , Inpatients , SARS-CoV-2 , United States/epidemiology
19.
MMWR Morb Mortal Wkly Rep ; 69(31): 1015-1019, 2020 Aug 07.
Article in English | MEDLINE | ID: covidwho-707230

ABSTRACT

On March 24, 2020, the South Dakota Department of Health (SDDOH) was notified of a case of coronavirus disease 2019 (COVID-19) in an employee at a meat processing facility (facility A) and initiated an investigation to isolate the employee and identify and quarantine contacts. On April 2, when 19 cases had been confirmed among facility A employees, enhanced testing for SARS-CoV-2, the virus that causes COVID-19, was implemented, so that any employee with a COVID-19-compatible sign or symptom (e.g., fever, cough, or shortness of breath) could receive a test from a local health care facility. By April 11, 369 COVID-19 cases had been confirmed among facility A employees; on April 12, facility A began a phased closure* and did not reopen during the period of investigation (March 16-April 25, 2020). At the request of SDDOH, a CDC team arrived on April 15 to assist with the investigation. During March 16-April 25, a total of 929 (25.6%) laboratory-confirmed COVID-19 cases were diagnosed among 3,635 facility A employees. At the outbreak's peak, an average of 67 cases per day occurred. An additional 210 (8.7%) cases were identified among 2,403 contacts of employees with diagnosed COVID-19. Overall, 48 COVID-19 patients were hospitalized, including 39 employees and nine contacts. Two employees died; no contacts died. Attack rates were highest among department-groups where employees tended to work in proximity (i.e., <6 feet [2 meters]) to one another on the production line. Cases among employees and their contacts declined to approximately 10 per day within 7 days of facility closure. SARS-CoV-2 can spread rapidly in meat processing facilities because of the close proximity of workstations and prolonged contact between employees (1,2). Facilities can reduce this risk by implementing a robust mitigation program, including engineering and administrative controls, consistent with published guidelines (1).


Subject(s)
Coronavirus Infections/epidemiology , Disease Outbreaks , Meat-Packing Industry , Occupational Diseases/epidemiology , Pneumonia, Viral/epidemiology , Adolescent , Adult , Aged , Aged, 80 and over , COVID-19 , Female , Humans , Male , Middle Aged , Pandemics , South Dakota/epidemiology , Young Adult
20.
MMWR Morb Mortal Wkly Rep ; 69(26): 825-829, 2020 Jul 03.
Article in English | MEDLINE | ID: covidwho-628016

ABSTRACT

In the United States, approximately 180,000 patients receive mental health services each day at approximately 4,000 inpatient and residential psychiatric facilities (1). SARS-CoV-2, the virus that causes coronavirus disease 2019 (COVID-19), can spread rapidly within congregate residential settings (2-4), including psychiatric facilities. On April 13, 2020, two patients were transferred to Wyoming's state psychiatric hospital from a private psychiatric hospital that had confirmed COVID-19 cases among its residents and staff members (5). Although both patients were asymptomatic at the time of transfer and one had a negative test result for SARS-CoV-2 at the originating facility, they were both isolated and received testing upon arrival at the state facility. On April 16, 2020, the test results indicated that both patients had SARS-CoV-2 infection. In response, the state hospital implemented expanded COVID-19 infection prevention and control (IPC) procedures (e.g., enhanced screening, testing, and management of new patient admissions) and adapted some standard IPC measures to facilitate implementation within the psychiatric patient population (e.g., use of modified face coverings). To assess the likely effectiveness of these procedures and determine SARS-CoV-2 infection prevalence among patients and health care personnel (HCP) (6) at the state hospital, a point prevalence survey was conducted. On May 1, 2020, 18 days after the patients' arrival, 46 (61%) of 76 patients and 171 (61%) of 282 HCP had nasopharyngeal swabs collected and tested for SARS-CoV-2 RNA by reverse transcription-polymerase chain reaction. All patients and HCP who received testing had negative test results, suggesting that the hospital's expanded IPC strategies might have been effective in preventing the introduction and spread of SARS-CoV-2 infection within the facility. In congregate residential settings, prompt identification of COVID-19 cases and application of strong IPC procedures are critical to ensuring the protection of other patients and staff members. Although standard guidance exists for other congregate facilities (7) and for HCP in general (8), modifications and nonstandard solutions might be needed to account for the specific needs of psychiatric facilities, their patients, and staff members.


Subject(s)
Coronavirus Infections/prevention & control , Cross Infection/prevention & control , Hospitals, Psychiatric , Mass Screening , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Residential Facilities , Adult , Aged , COVID-19 , Coronavirus Infections/epidemiology , Coronavirus Infections/transmission , Cross Infection/epidemiology , Female , Humans , Male , Middle Aged , Pneumonia, Viral/epidemiology , Pneumonia, Viral/transmission , Wyoming/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL