Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
2.
Aging Cell ; 21(3): e13545, 2022 03.
Article in English | MEDLINE | ID: covidwho-1741316

ABSTRACT

Frailty affects the physical, cognitive, and social domains exposing older adults to an increased risk of cardiovascular disease and death. The mechanisms linking frailty and cardiovascular outcomes are mostly unknown. Here, we studied the association of abundance (flow cytometry) and gene expression profile (RNAseq) of stem/progenitor cells (HSPCs) and molecular markers of inflammaging (ELISA) with the cardiorespiratory phenotype and prospective adverse events of individuals classified according to levels of frailty. Two cohorts of older adults were enrolled in the study. In a cohort of pre-frail 35 individuals (average age: 75 years), a physical frailty score above the median identified subjects with initial alterations in cardiorespiratory function. RNA sequencing revealed S100A8/A9 upregulation in HSPCs from the bone marrow (>10-fold) and peripheral blood (>200-fold) of individuals with greater physical frailty. Moreover higher frailty was associated with increased alarmins S100A8/A9 and inflammatory cytokines in peripheral blood. We then studied a cohort of 104 more frail individuals (average age: 81 years) with multidomain health deficits. Reduced levels of circulating HSPCs and increased S100A8/A9 concentrations were independently associated with the frailty index. Remarkably, low HSPCs and high S100A8/A9 simultaneously predicted major adverse cardiovascular events at 1-year follow-up after adjustment for age and frailty index. In conclusion, inflammaging characterized by alarmin and pro-inflammatory cytokines in pre-frail individuals is mirrored by the pauperization of HSPCs in frail older people with comorbidities. S100A8/A9 is upregulated within HSPCs, identifying a phenotype that associates with poor cardiovascular outcomes.


Subject(s)
Alarmins , Frailty , Aged , Calgranulin A/genetics , Calgranulin A/metabolism , Calgranulin B/genetics , Calgranulin B/metabolism , Cytokines/metabolism , Frailty/genetics , Hematopoietic Stem Cells/metabolism , Humans , Prospective Studies
3.
Nat Immunol ; 23(2): 275-286, 2022 02.
Article in English | MEDLINE | ID: covidwho-1661973

ABSTRACT

The humoral arm of innate immunity includes diverse molecules with antibody-like functions, some of which serve as disease severity biomarkers in coronavirus disease 2019 (COVID-19). The present study was designed to conduct a systematic investigation of the interaction of human humoral fluid-phase pattern recognition molecules (PRMs) with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Of 12 PRMs tested, the long pentraxin 3 (PTX3) and mannose-binding lectin (MBL) bound the viral nucleocapsid and spike proteins, respectively. MBL bound trimeric spike protein, including that of variants of concern (VoC), in a glycan-dependent manner and inhibited SARS-CoV-2 in three in vitro models. Moreover, after binding to spike protein, MBL activated the lectin pathway of complement activation. Based on retention of glycosylation sites and modeling, MBL was predicted to recognize the Omicron VoC. Genetic polymorphisms at the MBL2 locus were associated with disease severity. These results suggest that selected humoral fluid-phase PRMs can play an important role in resistance to, and pathogenesis of, COVID-19, a finding with translational implications.


Subject(s)
COVID-19/immunology , Immunity, Humoral , Receptors, Pattern Recognition/immunology , SARS-CoV-2/immunology , Animals , C-Reactive Protein/immunology , C-Reactive Protein/metabolism , COVID-19/metabolism , COVID-19/virology , Case-Control Studies , Chlorocebus aethiops , Complement Activation , Coronavirus Nucleocapsid Proteins/genetics , Coronavirus Nucleocapsid Proteins/immunology , Coronavirus Nucleocapsid Proteins/metabolism , Female , Glycosylation , HEK293 Cells , Host-Pathogen Interactions , Humans , Male , Mannose-Binding Lectin/genetics , Mannose-Binding Lectin/immunology , Mannose-Binding Lectin/metabolism , Phosphoproteins/genetics , Phosphoproteins/immunology , Phosphoproteins/metabolism , Polymorphism, Genetic , Protein Binding , Receptors, Pattern Recognition/genetics , Receptors, Pattern Recognition/metabolism , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , SARS-CoV-2/pathogenicity , Serum Amyloid P-Component/immunology , Serum Amyloid P-Component/metabolism , Signal Transduction , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/metabolism , Vero Cells
SELECTION OF CITATIONS
SEARCH DETAIL