Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Neurology ; 98(3): e315-e325, 2022 01 18.
Article in English | MEDLINE | ID: covidwho-1551285

ABSTRACT

BACKGROUND AND OBJECTIVES: In patients with severe coronavirus disease 2019 (COVID-19), disorders of consciousness (DoC) have emerged as a serious complication. The prognosis and pathophysiology of COVID-DoC remain unclear, complicating decisions about continuing life-sustaining treatment. We describe the natural history of COVID-DoC and investigate its associated brain connectivity profile. METHODS: In a prospective longitudinal study, we screened consecutive patients with COVID-19 at our institution. We enrolled critically ill adult patients with a DoC unexplained by sedation or structural brain injury and who were planned to undergo a brain MRI. We performed resting-state fMRI and diffusion MRI to evaluate functional and structural connectivity compared to healthy controls and patients with DoC resulting from severe traumatic brain injury (TBI). We assessed the recovery of consciousness (command following) and functional outcomes (Glasgow Outcome Scale Extended [GOSE] and the Disability Rating Scale [DRS]) at hospital discharge and 3 and 6 months after discharge. We also explored whether clinical variables were associated with recovery from COVID-DoC. RESULTS: After screening 1,105 patients with COVID-19, we enrolled 12 with COVID-DoC. The median age was 63.5 years (interquartile range 55-76.3 years). After the exclusion of 1 patient who died shortly after enrollment, all of the remaining 11 patients recovered consciousness 0 to 25 days (median 7 [5-14.5] days) after the cessation of continuous IV sedation. At discharge, all surviving patients remained dependent: median GOSE score 3 (1-3) and median DRS score 23 (16-30). Ultimately, however, except for 2 patients with severe polyneuropathy, all returned home with normal cognition and minimal disability: at 3 months, median GOSE score 3 (3-3) and median DRS score 7 (5-13); at 6 months, median GOSE score 4 (4-5), median DRS score 3 (3-5). Ten patients with COVID-DoC underwent advanced neuroimaging; functional and structural brain connectivity in those with COVID-DoC was diminished compared to healthy controls, and structural connectivity was comparable to that in patients with severe TBI. DISCUSSION: Patients who survived invariably recovered consciousness after COVID-DoC. Although disability was common after hospitalization, functional status improved over the ensuing months. While future research is necessary, these prospective findings inform the prognosis and pathophysiology of COVID-DoC. TRIAL REGISTRATION INFORMATION: ClinicalTrials.gov identifier: NCT04476589.


Subject(s)
COVID-19 , Consciousness Disorders , Aged , Brain/diagnostic imaging , COVID-19/complications , Consciousness Disorders/diagnostic imaging , Consciousness Disorders/virology , Humans , Longitudinal Studies , Magnetic Resonance Imaging , Middle Aged , Prospective Studies , Recovery of Function
2.
Acad Radiol ; 2021 Oct 08.
Article in English | MEDLINE | ID: covidwho-1458676

ABSTRACT

INTRODUCTION: Clinical validation studies have demonstrated the ability of accelerated MRI sequences to decrease acquisition time and motion artifact while preserving image quality. The operational benefits, however, have been less explored. Here, we report our initial clinical experience in implementing fast MRI techniques for outpatient brain imaging during the COVID-19 pandemic. METHODS: Aggregate acquisition times were extracted from the medical record on consecutive imaging examinations performed during matched pre-implementation (7/1/2019-12/31/2019) and post-implementation periods (7/1/2020-12/31/2020). Expected acquisition time reduction for each MRI protocol was calculated through manual collection of acquisition times for the conventional and accelerated sequences performed during the pre- and post-implementation periods. Aggregate and expected acquisition times were compared for the five most frequently performed brain MRI protocols: brain without contrast (BR-), brain with and without contrast (BR+), multiple sclerosis (MS), memory loss (MML), and epilepsy (EPL). RESULTS: The expected time reductions for BR-, BR+, MS, MML, and EPL protocols were 6.6 min, 11.9 min, 14 min, 10.8 min, and 14.1 min, respectively. The overall median aggregate acquisition time was 31 [25, 36] min for the pre-implementation period and 18 [15, 22] min for the post-implementation period, with a difference of 13 min (42%). The median acquisition time was reduced by 4 min (25%) for BR-, 14.0 min (44%) for BR+, 14 min (38%) for MS, 11 min (52%) for MML, and 16 min (35%) for EPL. CONCLUSION: The implementation of fast brain MRI sequences significantly reduced the acquisition times for the most commonly performed outpatient brain MRI protocols.

3.
Curr Probl Diagn Radiol ; 2021 Jul 04.
Article in English | MEDLINE | ID: covidwho-1293031

ABSTRACT

In an era of rapidly expanding knowledge and sub-specialization, it is becoming increasingly common to focus on one organ system. However, the human body is intimately linked, and disease processes affecting one region of the body not uncommonly affect the other organ systems as well. Understanding diseases from a macroscopic perspective, rather than a narrow vantage point, enables efficient and accurate diagnosis. This tenet holds true for diseases affecting both the thoracic and neurological systems; in isolation, the radiologic appearance of disease in one organ system may be nonspecific, but viewing the pathophysiologic process in both organ systems may markedly narrow the differential considerations, and potentially lead to a definitive diagnosis. In this article, we discuss a variety of disease entities known to affect both the thoracic and neurological systems, either manifesting simultaneously or at different periods of time. Some of these conditions may show neither thoracic nor neurological manifestations. These diseases have been systematically classified into infectious, immune-mediated / inflammatory, vascular, syndromic / hereditary and neoplastic disorders. The underlying pathophysiological mechanisms linking both regions and radiologic appearances in both organ systems are discussed. When appropriate, brief clinical and diagnostic information is provided. Ultimately, accurate diagnosis will lead to expedited triage and prompt institution of potentially life-saving treatment for these groups of complex disorders.

4.
J Am Coll Radiol ; 18(7): 1027-1037, 2021 07.
Article in English | MEDLINE | ID: covidwho-1207037

ABSTRACT

PURPOSE: Coronavirus disease 2019 and the publicly documented deaths of countless Black individuals have highlighted the need to confront systemic racism, address racial/ethnic disparities, and improve diversity and inclusion in radiology. Several radiology departments have begun to create diversity, equity, and inclusion (DEI) committees to systematically address DEI issues in radiology. However, there are few articles that provide departments with guidance on how to create DEI committees to comprehensively address DEI issues in radiology. The purpose of this review is to provide readers with a framework and practical tips for creating a comprehensive, institutionally aligned radiology DEI committee. METHODS: The authors describe key components of the strategic planning process and lessons learned in the creation of a radiology DEI committee, on the basis of the experience of an integrated, academic northeastern radiology department. RESULTS: A hospital-based strategic planning process defining the DEI vision, mission, goals, and strategies was used to inform the formation of the radiology department DEI committee. The radiology department performed gap analyses by conducting internal and external research. Strengths, weaknesses, opportunities, and threats analyses were performed on the basis of consultations with institutional and other departmental DEI leaders as well as DEI leaders from other academic medical centers. This framework served as the basis for the creation of the radiology departmental DEI committee, including a steering committee and four task forces (education, research, patient experience, and workforce development), each charged with addressing specific institutional goals and strategies. CONCLUSIONS: This review provides academic radiology departments with a blueprint to create a comprehensive, institutionally aligned radiology DEI committee.


Subject(s)
COVID-19 , Radiology Department, Hospital , Radiology , Academic Medical Centers , Humans , Multicenter Studies as Topic , SARS-CoV-2
5.
J Neurol Sci ; 421: 117308, 2021 02 15.
Article in English | MEDLINE | ID: covidwho-1033825

ABSTRACT

We evaluated the incidence, distribution, and histopathologic correlates of microvascular brain lesions in patients with severe COVID-19. Sixteen consecutive patients admitted to the intensive care unit with severe COVID-19 undergoing brain MRI for evaluation of coma or neurologic deficits were retrospectively identified. Eleven patients had punctate susceptibility-weighted imaging (SWI) lesions in the subcortical and deep white matter, eight patients had >10 SWI lesions, and four patients had lesions involving the corpus callosum. The distribution of SWI lesions was similar to that seen in patients with hypoxic respiratory failure, sepsis, and disseminated intravascular coagulation. Brain autopsy in one patient revealed that SWI lesions corresponded to widespread microvascular injury, characterized by perivascular and parenchymal petechial hemorrhages and microscopic ischemic lesions. Collectively, these radiologic and histopathologic findings add to growing evidence that patients with severe COVID-19 are at risk for multifocal microvascular hemorrhagic and ischemic lesions in the subcortical and deep white matter.


Subject(s)
Brain Injuries/diagnostic imaging , COVID-19/diagnostic imaging , Magnetic Resonance Imaging/methods , Microvessels/diagnostic imaging , Severity of Illness Index , Brain/blood supply , Brain/diagnostic imaging , Brain Injuries/etiology , COVID-19/complications , Humans , Intensive Care Units/trends , Male , Microvessels/injuries , Middle Aged , Retrospective Studies
6.
Ann Neurol ; 88(4): 851-854, 2020 10.
Article in English | MEDLINE | ID: covidwho-625491

ABSTRACT

Many patients with severe coronavirus disease 2019 (COVID-19) remain unresponsive after surviving critical illness. Although several structural brain abnormalities have been described, their impact on brain function and implications for prognosis are unknown. Functional neuroimaging, which has prognostic significance, has yet to be explored in this population. Here we describe a patient with severe COVID-19 who, despite prolonged unresponsiveness and structural brain abnormalities, demonstrated intact functional network connectivity, and weeks later recovered the ability to follow commands. When prognosticating for survivors of severe COVID-19, clinicians should consider that brain networks may remain functionally intact despite structural injury and prolonged unresponsiveness. ANN NEUROL 2020;88:851-854.


Subject(s)
Brain/diagnostic imaging , Coma/diagnostic imaging , Coronavirus Infections/physiopathology , Persistent Vegetative State/diagnostic imaging , Pneumonia, Viral/physiopathology , Recovery of Function , Betacoronavirus , Brain/physiopathology , COVID-19 , Coma/physiopathology , Coronavirus Infections/therapy , Electroencephalography , Functional Neuroimaging , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Neural Pathways , Pandemics , Persistent Vegetative State/physiopathology , Pneumonia, Viral/therapy , Prognosis , Renal Insufficiency/physiopathology , Respiration, Artificial , Respiratory Distress Syndrome/physiopathology , Respiratory Distress Syndrome/therapy , SARS-CoV-2 , Shock/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL