Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Intensive Care Med Exp ; 9(1): 43, 2021 Sep 03.
Article in English | MEDLINE | ID: covidwho-1394469

ABSTRACT

BACKGROUND: Progranulin is a widely expressed pleiotropic growth factor with a central regulatory effect during the early immune response in sepsis. Progranulin signaling has not been systematically studied and compared between sepsis, community-acquired pneumonia (CAP), COVID-19 pneumonia and a sterile systemic inflammatory response (SIRS). We delineated molecular networks of progranulin signaling by next-generation sequencing (NGS), determined progranulin plasma concentrations and quantified the diagnostic performance of progranulin to differentiate between the above-mentioned disorders using the established biomarkers procalcitonin (PCT), interleukin-6 (IL-6) and C-reactive protein (CRP) for comparison. METHODS: The diagnostic performance of progranulin was operationalized by calculating AUC and ROC statistics for progranulin and established biomarkers in 241 patients with sepsis, 182 patients with SIRS, 53 patients with CAP, 22 patients with COVID-19 pneumonia and 53 healthy volunteers. miRNAs and mRNAs in blood cells from sepsis patients (n = 7) were characterized by NGS and validated by RT-qPCR in an independent cohort (n = 39) to identify canonical gene networks associated with upregulated progranulin at sepsis onset. RESULTS: Plasma concentrations of progranulin (ELISA) in patients with sepsis were 57.5 (42.8-84.9, Q25-Q75) ng/ml and significantly higher than in CAP (38.0, 33.5-41.0 ng/ml, p < 0.001), SIRS (29.0, 25.0-35.0 ng/ml, p < 0.001) and the healthy state (28.7, 25.5-31.7 ng/ml, p < 0.001). Patients with COVID-19 had significantly higher progranulin concentrations than patients with CAP (67.6, 56.6-96.0 vs. 38.0, 33.5-41.0 ng/ml, p < 0.001). The diagnostic performance of progranulin for the differentiation between sepsis vs. SIRS (n = 423) was comparable to that of procalcitonin. AUC was 0.90 (95% CI = 0.87-0.93) for progranulin and 0.92 (CI = 0.88-0.96, p = 0.323) for procalcitonin. Progranulin showed high discriminative power to differentiate bacterial CAP from COVID-19 (sensitivity 0.91, specificity 0.94, AUC 0.91 (CI = 0.8-1.0) and performed significantly better than PCT, IL-6 and CRP. NGS and partial RT-qPCR confirmation revealed a transcriptomic network of immune cells with upregulated progranulin and sortilin transcripts as well as toll-like-receptor 4 and tumor-protein 53, regulated by miR-16 and others. CONCLUSIONS: Progranulin signaling is elevated during the early antimicrobial response in sepsis and differs significantly between sepsis, CAP, COVID-19 and SIRS. This suggests that progranulin may serve as a novel indicator for the differentiation between these disorders. TRIAL REGISTRATION: Clinicaltrials.gov registration number NCT03280576 Registered November 19, 2015.

2.
Front Immunol ; 12: 640644, 2021.
Article in English | MEDLINE | ID: covidwho-1133916

ABSTRACT

Infection with SARS-CoV-2 can lead to Coronavirus disease-2019 (COVID-19) and result in severe acute respiratory distress syndrome (ARDS). Recent reports indicate an increased rate of fungal coinfections during COVID-19. With incomplete understanding of the pathogenesis and without any causative therapy available, secondary infections may be detrimental to the prognosis. We monitored 11 COVID-19 patients with ARDS for their immune phenotype, plasma cytokines, and clinical parameters on the day of ICU admission and on day 4 and day 7 of their ICU stay. Whole blood stimulation assays with lipopolysaccharide (LPS), heat-killed Listeria monocytogenes (HKLM), Aspergillus fumigatus, and Candida albicans were used to mimic secondary infections, and changes in immune phenotype and cytokine release were assessed. COVID-19 patients displayed an immune phenotype characterized by increased HLA-DR+CD38+ and PD-1+ CD4+ and CD8+ T cells, and elevated CD8+CD244+ lymphocytes, compared to healthy controls. Monocyte activation markers and cytokines IL-6, IL-8, TNF, IL-10, and sIL2Rα were elevated, corresponding to monocyte activation syndrome, while IL-1ß levels were low. LPS, HKLM and Aspergillus fumigatus antigen stimulation provoked an immune response that did not differ between COVID-19 patients and healthy controls, while COVID-19 patients showed an attenuated monocyte CD80 upregulation and abrogated release of IL-6, TNF, IL-1α, and IL-1ß toward Candida albicans. This study adds further detail to the characterization of the immune response in critically ill COVID-19 patients and hints at an increased susceptibility for Candida albicans infection.


Subject(s)
Aspergillus fumigatus/immunology , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , COVID-19/immunology , Candida albicans/immunology , Listeria monocytogenes/immunology , SARS-CoV-2/physiology , Aged , Cells, Cultured , Cytokines/metabolism , Disease Susceptibility , Female , Humans , Immune Tolerance , Male , Middle Aged , Programmed Cell Death 1 Receptor/metabolism , Respiratory Distress Syndrome
3.
J Cell Mol Med ; 24(20): 12054-12064, 2020 10.
Article in English | MEDLINE | ID: covidwho-755303

ABSTRACT

Cell-free microRNAs (miRNAs) are transferred in disease state including inflammatory lung diseases and are often packed into extracellular vesicles (EVs). To assess their suitability as biomarkers for community-acquired pneumonia (CAP) and severe secondary complications such as sepsis, we studied patients with CAP (n = 30), sepsis (n = 65) and healthy volunteers (n = 47) subdivided into a training (n = 67) and a validation (n = 75) cohort. After precipitating crude EVs from sera, associated small RNA was profiled by next-generation sequencing (NGS) and evaluated in multivariate analyses. A subset of the thereby identified biomarker candidates was validated both technically and additionally by reverse transcription quantitative real-time PCR (RT-qPCR). Differential gene expression (DGE) analysis revealed 29 differentially expressed miRNAs in CAP patients when compared to volunteers, and 25 miRNAs in patients with CAP, compared to those with sepsis. Sparse partial-least discriminant analysis separated groups based on 12 miRNAs. Three miRNAs proved as a significant biomarker signature. While expression levels of miR-1246 showed significant changes with an increase in overall disease severity from volunteers to CAP and to sepsis, miR-193a-5p and miR-542-3p differentiated patients with an infectious disease (CAP or sepsis) from volunteers. Cell-free miRNAs are potentially novel biomarkers for CAP and may help to identify patients at risk for progress to sepsis, facilitating early intervention and treatment.


Subject(s)
Circulating MicroRNA/blood , Community-Acquired Infections/diagnosis , Community-Acquired Infections/genetics , Pneumonia/diagnosis , Pneumonia/genetics , Sepsis/blood , Sepsis/complications , Aged , Aged, 80 and over , Circulating MicroRNA/genetics , Community-Acquired Infections/blood , Gene Expression Regulation , Humans , Immunity, Humoral/genetics , Middle Aged , Multivariate Analysis , Pneumonia/blood , Pneumonia/complications , Reproducibility of Results , Reverse Transcription/genetics , Sepsis/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...