Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
1.
EuropePMC; 2022.
Preprint in English | EuropePMC | ID: ppcovidwho-333072

ABSTRACT

Objectives: To investigate the intensity and longevity of SARS-CoV-2 vaccination response in patients with immune-mediated inflammatory disease (IMID) by diagnosis, treatment and adapted vaccination schedules. Methods SARS-CoV-2 IgG antibody response after SARS-CoV-2 vaccination was measured longitudinally in a large prospective cohort of healthy controls (HC) and IMID patients between December 2020 and 2021. Demographic and disease-specific data were recorded. Humoral response was compared across treatment and disease groups, and with respect to receipt of booster vaccinations. Age and sex adjusted SARS-CoV-2 antibody response was modelled over time. Marginal mean antibody levels and marginal risks of poor response were calculated at weekly intervals starting from week-8 after the first vaccination up to week 40. Results Among 5076 individuals registered, 2535 IMID patients and 1198 HC were eligible for this analysis. Mean antibody levels were higher in HC compared to IMIDs at all-time points, with peak antibody response in HC more than twice that in IMIDs (12.48 (11.52-13.52) vs. 5.71 (5.46-5.97)). Poor response to vaccination was observed in IMID patients treated with agents affecting B- and T-cell functions. Mean differences in antibody response between IMID diseases were small. After additional vaccinations, IMID patients could achieve higher antibody levels than HC vaccinated according to the two-dose schedule, even-though initial antibody levels were lower. Conclusions IMID patients show a lower and less durable SARS-CoV-2 vaccination response and are at risk to lose humoral immune protection. Adjusted vaccination schedules with earlier boosters and/or more frequent re-doses could better protect IMID patients.

2.
Viruses ; 14(3)2022 03 21.
Article in English | MEDLINE | ID: covidwho-1753693

ABSTRACT

Only limited data are available regarding the immunogenicity of the BNT162b2 mRNA vaccine in HIV-1+ patients. Therefore, we investigated the humoral immune response after BNT162b2-mRNA vaccination or SARS-CoV-2 infection in HIV-1+ patients on antiretroviral therapy compared to HIV-1-uninfected subjects. Serum and saliva samples were analysed by SARS-CoV-2 spike-specific IgG and IgA ELISAs and a surrogate neutralization assay. While all subjects developed anti-spike IgG and IgA and neutralizing antibodies in serum after two doses of BNT162b2 mRNA vaccine, the HIV-1+ subjects displayed significantly lower neutralizing capacity and anti-spike IgA in serum compared to HIV-1-uninfected subjects. Serum levels of anti-spike IgG and neutralizing activity were significantly higher in vaccinees compared to SARS-CoV-2 convalescents irrespective of HIV-1 status. Among SARS-CoV-2 convalescents, there was no significant difference in spike-specific antibody response between HIV-1+ and uninfected subjects. In saliva, anti-spike IgG and IgA antibodies were detected both in vaccinees and convalescents, albeit at lower frequencies compared to the serum and only rarely with detectable neutralizing activity. In summary, our study demonstrates that the BNT162b2 mRNA vaccine induces SARS-CoV-2-specific antibodies in HIV-1-infected patients on antiretroviral therapy, however, lower vaccine induced neutralization activity indicates a lower functionality of the humoral vaccine response in HIV-1+ patients.


Subject(s)
COVID-19 , HIV-1 , Viral Vaccines , COVID-19/prevention & control , Humans , RNA, Messenger/genetics , SARS-CoV-2 , Vaccination , Vaccines, Synthetic
3.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-321642

ABSTRACT

Background: A number of histopathological reports showed the presence of widespread thrombosis and associated morphology in pulmonary vessels of patients with COVID-19. Later, we identified vascular occlusions with neutrophils and neutrophil extracellular traps (NETs), as major components, in autopsy tissue from patients with COVID-19.Methods: We, here investigated 109 lung specimens from 17 patients with COVID-19 and compared them with 11 lung specimens from two patients who succumbed to pulmonary embolism and acute cardiac. Healthy lung specimens from four patients served as controls. We studied these autopsy lung specimens using immunohistochemistry and native endogenous fluorescence.Findings: We present a label-free imaging technique using native endogenous fluorescence that enables the visualization of occluded vessels. We demonstrate that native endogenous fluorescence identified occluded vessels in tissue specimens from patients with COVID-19.Interpretation: Label-free detection of occluded vessels enabled the detection of affected occluded vessels in lung specimens of patients with COVID-19 where the occluding components showed varying contents of neutrophil-derived materials.Funding Statement: Deutsche Forschungsgemeinschaft (DFG), EU, Volkswagen-StiftungDeclaration of Interests: All authors have no conflicts of interests to declare.Ethics Approval Statement: An institutional approval from each local Ethical Committee was obtained (permit #193_13B;permit # 174_20B;EK 092/20;EK 119/20;EK 460/20).

4.
EuropePMC; 2020.
Preprint in English | EuropePMC | ID: ppcovidwho-321594

ABSTRACT

Immune-mediated inflammatory diseases (IMIDs) of the joints, gut and skin are treated with inhibitors of inflammatory cytokines. These cytokines are involved in the pathogenesis of coronavirus disease 2019 (COVID-19). Investigating anti-SARS-CoV-2 antibody responses in IMIDs we observed a significantly reduced incidence of SARS-CoV-2 infection in IMID patients treated with cytokine inhibitors compared to patients receiving no such inhibitors and two healthy control populations, despite similar social exposure. Hence, cytokine inhibitors seem to at least partially protect from SARS-CoV-2 infection.Authors David Simon and Koray Tascilar contributed equally to this work. Authors Markus F. Neurath and Georg Schett share senior authorship.

5.
Arthritis Rheumatol ; 74(5): 783-790, 2022 05.
Article in English | MEDLINE | ID: covidwho-1589173

ABSTRACT

OBJECTIVE: To investigate the impact of biologic disease-modifying antirheumatic drug (bDMARD) treatment on the prevalence, seroconversion rate, and longevity of the humoral immune response against SARS-CoV-2 in patients with immune-mediated inflammatory diseases (IMIDs). METHODS: Anti-SARS-CoV-2 IgG antibodies were measured in a prospective cohort of health care professional controls and non-health care controls and IMID patients receiving no treatment or receiving treatment with conventional or biologic DMARDs during the first and second COVID-19 waves. Regression models adjusting for age, sex, sampling time, and exposure risk behavior were used to calculate relative risks (RRs) of seropositivity. Seroconversion rates were assessed in participants with polymerase chain reaction (PCR)-positive SARS-CoV-2 infection. Antibody response longevity was evaluated by reassessing participants who tested positive during the first wave. RESULTS: In this study, 4,508 participants (2,869 IMID patients and 1,639 controls) were analyzed. The unadjusted RR (0.44 [95% confidence interval (95% CI) 0.31-0.62]) and adjusted RR (0.50 [95% CI 0.34-0.73]) for SARS-CoV-2 IgG antibodies were significantly lower in IMID patients treated with bDMARDs compared to non-health care controls (P < 0.001), primarily driven by treatment with tumor necrosis factor inhibitors, interleukin-17 (IL-17) inhibitors, and IL-23 inhibitors. Adjusted RRs for untreated IMID patients (1.12 [95% CI 0.75-1.67]) and IMID patients receiving conventional synthetic DMARDs (0.70 [95% CI 0.45-1.08]) were not significantly different from non-health care controls. Lack of seroconversion in PCR-positive participants was more common among bDMARD-treated patients (38.7%) than in non-health care controls (16%). Overall, 44% of positive participants lost SARS-CoV-2 antibodies by follow-up, with higher rates in IMID patients treated with bDMARDs (RR 2.86 [95% CI 1.43-5.74]). CONCLUSION: IMID patients treated with bDMARDs have a lower prevalence of SARS-CoV-2 antibodies, seroconvert less frequently after SARS-CoV-2 infection, and may exhibit a reduced longevity of their humoral immune response.


Subject(s)
Antirheumatic Agents , Biological Products , COVID-19 , Antibodies, Viral , Antirheumatic Agents/therapeutic use , Cytokines , Humans , Immunity, Humoral , Immunoglobulin G , Prevalence , Prospective Studies , SARS-CoV-2 , Seroconversion
6.
Ann Rheum Dis ; 2021 Nov 24.
Article in English | MEDLINE | ID: covidwho-1532998

ABSTRACT

OBJECTIVES: To test whether patients with immune-mediated inflammatory disease (IMIDs), who did not respond to two doses of the SARS-CoV-2 vaccine, develop protective immunity, if a third vaccine dose is administered. METHODS: Patients with IMID who failed to seroconvert after two doses of SARS-CoV-2 vaccine were subjected to a third vaccination with either mRNA or vector-based vaccines. Anti-SARS-CoV-2 IgG, neutralising activity and T cell responses were assessed at baseline and 3 weeks after revaccination and also evaluated seprarately in rituximab (RTX) and non-RTX exposed patients. RESULTS: 66 non-responders were recruited, 33 treated with RTX, and 33 non-exposed to RTX. Overall, 49.2% patients seroconverted and 50.0% developed neutralising antibody activity. Seroconversion (78.8% vs 18.2%) and neutralising activity (80.0% vs 21.9%) was higher in non-RTX than RTX-treated patients with IMID, respectively. Humoral vaccination responses were not different among patients showing positive (59.3%) or negative (49.7%) T cell responses at baseline. Patients remaining on mRNA-based vaccines showed similar vaccination responses compared with those switching to vector-based vaccines. CONCLUSIONS: Overall, these data strongly argue in favor of a third vaccination in patients with IMID lacking response to standard vaccination irrespective of their B cell status.

7.
Arthritis Rheumatol ; 74(1): 33-37, 2022 01.
Article in English | MEDLINE | ID: covidwho-1527417

ABSTRACT

OBJECTIVE: B cell depletion is an established therapeutic principle in a wide range of autoimmune diseases. However, B cells are also critical for inducing protective immunity after infection and vaccination. We undertook this study to assess humoral and cellular immune responses after infection with or vaccination against SARS-CoV-2 in patients with B cell depletion and controls who are B cell-competent. METHODS: Antibody responses (tested using enzyme-linked immunosorbent assay) and T cell responses (tested using interferon-γ enzyme-linked immunospot assay) against the SARS-CoV-2 spike S1 and nucleocapsid proteins were assessed in a limited number of previously infected (n = 6) and vaccinated (n = 8) autoimmune disease patients with B cell depletion, as well as previously infected (n = 30) and vaccinated (n = 30) healthy controls. RESULTS: As expected, B cell and T cell responses to the nucleocapsid protein were observed only after infection, while respective responses to SARS-CoV-2 spike S1 were found after both infection and vaccination. A SARS-CoV-2 antibody response was observed in all vaccinated controls (30 of 30 [100%]) but in none of the vaccinated patients with B cell depletion (0 of 8). In contrast, after SARS-CoV-2 infection, both the patients with B cell depletion (spike S1, 5 of 6 [83%]; nucleocapsid, 3 of 6 [50%]) and healthy controls (spike S1, 28 of 30 [93%]; nucleocapsid, 28 of 30 [93%]) developed antibodies. T cell responses against the spike S1 and nucleocapsid proteins were found in both infected and vaccinated patients with B cell depletion and in the controls. CONCLUSION: These data show that B cell depletion completely blocks humoral but not T cell SARS-CoV-2 vaccination response. Furthermore, limited humoral immune responses are found after SARS-CoV-2 infection in patients with B cell depletion.


Subject(s)
Autoimmune Diseases/immunology , B-Lymphocytes/immunology , COVID-19 Vaccines/immunology , COVID-19/immunology , Lymphocyte Depletion/adverse effects , SARS-CoV-2/immunology , Autoimmune Diseases/drug therapy , Autoimmune Diseases/virology , COVID-19/prevention & control , Humans , Immunity, Cellular/immunology , Immunity, Humoral/immunology
8.
Arthritis Rheumatol ; 74(5): 909-910, 2022 May.
Article in English | MEDLINE | ID: covidwho-1490706
9.
Cells ; 10(9)2021 08 26.
Article in English | MEDLINE | ID: covidwho-1458477

ABSTRACT

The enlightenment of the formation of neutrophil extracellular traps (NETs) as a part of the innate immune system shed new insights into the pathologies of various diseases. The initial idea that NETs are a pivotal defense structure was gradually amended due to several deleterious effects in consecutive investigations. NETs formation is now considered a double-edged sword. The harmful effects are not limited to the induction of inflammation by NETs remnants but also include occlusions caused by aggregated NETs (aggNETs). The latter carries the risk of occluding tubular structures like vessels or ducts and appear to be associated with the pathologies of various diseases. In addition to life-threatening vascular clogging, other occlusions include painful stone formation in the biliary system, the kidneys, the prostate, and the appendix. AggNETs are also prone to occlude the ductal system of exocrine glands, as seen in ocular glands, salivary glands, and others. Last, but not least, they also clog the pancreatic ducts in a murine model of neutrophilia. In this regard, elucidating the mechanism of NETs-dependent occlusions is of crucial importance for the development of new therapeutic approaches. Therefore, the purpose of this review is to address the putative mechanisms of NETs-associated occlusions in the pathogenesis of disease, as well as prospective treatment modalities.


Subject(s)
Embolism/immunology , Extracellular Traps/physiology , Thrombosis/immunology , Animals , Body Fluids/immunology , Body Fluids/physiology , Embolism/physiopathology , Extracellular Traps/immunology , Extracellular Traps/metabolism , Humans , Inflammation/pathology , Neutrophils/immunology , Prospective Studies , Thrombosis/physiopathology
10.
Lancet Rheumatol ; 3(10): e724-e736, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-1373323

ABSTRACT

At the beginning of the COVID-19 pandemic, patients with immune-mediated inflammatory diseases were considered to be at high risk for SARS-CoV-2 infection and the development of severe COVID-19. Data collected over the past year, however, suggest that a diagnosis of inflammatory arthritis, psoriasis, or inflammatory bowel diseases does not increase risk for SARS-CoV-2 infection or severe COVID-19 compared with people without these diseases. Furthermore, substantial data suggest that certain medications frequently used in patients with immune-mediated inflammatory diseases, in particular cytokine inhibitors, might even lower the risk for severe COVID-19. Conversely, glucocorticoids and potentially B-cell-depleting treatments seem to worsen COVID-19 outcomes. Additionally, the first data on SARS-CoV-2 vaccination in patients with these diseases suggest that tolerability of vaccination in patients with immune-mediated inflammatory diseases is good, although the immune response to vaccination can be somewhat reduced in this patient group, particularly those taking methotrexate or CD20-targeted treatment.

12.
Arthritis Res Ther ; 23(1): 166, 2021 06 10.
Article in English | MEDLINE | ID: covidwho-1266501

ABSTRACT

BACKGROUND: To investigate whether methotrexate treatment may affect the susceptibility to infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). METHODS: Clinical assessment of symptoms, SARS-CoV-2 RNA, and anti-SARS-CoV-2 IgG in an initial case series of four families and confirmatory case series of seven families, within which one family member developed coronavirus disease 19 (COVID-19) and exposed another family member receiving methotrexate treatment; experimental part with methotrexate treatment of mice and organoids followed by the assessment of mRNA and protein expression of the SARS-CoV-2 receptor angiotensin-converting enzyme (ACE)-2. RESULTS: In the initial case series, three of four women on a joint ski trip developed COVID-19, while the fourth woman, under treatment with methotrexate, remained virus-free. Two of the three diseased women infected their husbands, while the third husband treated with methotrexate remained virus-free. In addition, 7 other families were identified in a follow-up case series, in which one member developed COVID-19, while the other, receiving methotrexate, remained healthy. Experimentally, when mice were treated with methotrexate, ACE2 expression significantly decreased in the lung, in the intestinal epithelium, and in intestinal organoids. CONCLUSION: These clinical and experimental data indicate that methotrexate has certain protective effects on SARS-CoV-2 infection via downregulating ACE2.


Subject(s)
COVID-19 , Animals , Humans , Methotrexate , Mice , RNA, Viral , SARS-CoV-2
13.
Ann Rheum Dis ; 80(10): 1339-1344, 2021 10.
Article in English | MEDLINE | ID: covidwho-1243691

ABSTRACT

OBJECTIVE: To investigate the humoral and cellular immune response to messenger RNA (mRNA) COVID-19 vaccines in patients with immune-mediated inflammatory diseases (IMIDs) on immunomodulatory treatment. METHODS: Established patients at New York University Langone Health with IMID (n=51) receiving the BNT162b2 mRNA vaccination were assessed at baseline and after second immunisation. Healthy subjects served as controls (n=26). IgG antibody responses to the spike protein were analysed for humoral response. Cellular immune response to SARS-CoV-2 was further analysed using high-parameter spectral flow cytometry. A second independent, validation cohort of controls (n=182) and patients with IMID (n=31) from Erlangen, Germany, were also analysed for humoral immune response. RESULTS: Although healthy subjects (n=208) and patients with IMID on biologic treatments (mostly on tumour necrosis factor blockers, n=37) demonstrate robust antibody responses (over 90%), those patients with IMID on background methotrexate (n=45) achieve an adequate response in only 62.2% of cases. Similarly, patients with IMID on methotrexate do not demonstrate an increase in CD8+ T-cell activation after vaccination. CONCLUSIONS: In two independent cohorts of patients with IMID, methotrexate, a widely used immunomodulator for the treatment of several IMIDs, adversely affected humoral and cellular immune response to COVID-19 mRNA vaccines. Although precise cut-offs for immunogenicity that correlate with vaccine efficacy are yet to be established, our findings suggest that different strategies may need to be explored in patients with IMID taking methotrexate to increase the chances of immunisation efficacy against SARS-CoV-2 as has been demonstrated for augmenting immunogenicity to other viral vaccines.

14.
Cell Death Differ ; 28(11): 3125-3139, 2021 11.
Article in English | MEDLINE | ID: covidwho-1241944

ABSTRACT

SARS-CoV-2 infection poses a major threat to the lungs and multiple other organs, occasionally causing death. Until effective vaccines are developed to curb the pandemic, it is paramount to define the mechanisms and develop protective therapies to prevent organ dysfunction in patients with COVID-19. Individuals that develop severe manifestations have signs of dysregulated innate and adaptive immune responses. Emerging evidence implicates neutrophils and the disbalance between neutrophil extracellular trap (NET) formation and degradation plays a central role in the pathophysiology of inflammation, coagulopathy, organ damage, and immunothrombosis that characterize severe cases of COVID-19. Here, we discuss the evidence supporting a role for NETs in COVID-19 manifestations and present putative mechanisms, by which NETs promote tissue injury and immunothrombosis. We present therapeutic strategies, which have been successful in the treatment of immunο-inflammatory disorders and which target dysregulated NET formation or degradation, as potential approaches that may benefit patients with severe COVID-19.


Subject(s)
COVID-19/pathology , Extracellular Traps/metabolism , Neutrophils/immunology , COVID-19/complications , COVID-19/immunology , Citrullination , Complement Activation , Humans , Neutrophils/metabolism , Platelet Activation , SARS-CoV-2/isolation & purification , Severity of Illness Index , Thrombosis/etiology
15.
Ann Rheum Dis ; 80(10): 1312-1316, 2021 10.
Article in English | MEDLINE | ID: covidwho-1220000

ABSTRACT

OBJECTIVES: To better understand the factors that influence the humoral immune response to vaccination against SARS-CoV-2 in patients with immune-mediated inflammatory diseases (IMIDs). METHODS: Patients and controls from a large COVID-19 study, with (1) no previous history of COVID-19, (2) negative baseline anti-SARS-CoV-2 IgG test and (3) SARS-CoV-2 vaccination at least 10 days before serum collection were measured for anti-SARS-CoV-2 IgG. Demographic, disease-specific and vaccination-specific data were recorded. RESULTS: Vaccination responses from 84 patients with IMID and 182 controls were analysed. While all controls developed anti-SARS-CoV-2 IgG, five patients with IMID failed to develop a response (p=0.003). Moreover, 99.5% of controls but only 90.5% of patients with IMID developed neutralising antibody activity (p=0.0008). Overall responses were delayed and reduced in patients (mean (SD): 6.47 (3.14)) compared with controls (9.36 (1.85); p<0.001). Estimated marginal means (95% CI) adjusted for age, sex and time from first vaccination to sampling were 8.48 (8.12-8.85) for controls and 6.90 (6.45-7.35) for IMIDs. Significantly reduced vaccination responses pertained to untreated, conventionally and anticytokine treated patients with IMID. CONCLUSIONS: Immune responses against the SARS-CoV-2 are delayed and reduced in patients with IMID. This effect is based on the disease itself rather than concomitant treatment.


Subject(s)
COVID-19 Vaccines/immunology , COVID-19/prevention & control , Immunogenicity, Vaccine/immunology , Rheumatic Diseases/immunology , Adult , Aged , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , Antirheumatic Agents/therapeutic use , Female , Humans , Male , Middle Aged , Rheumatic Diseases/drug therapy , SARS-CoV-2
16.
Int J Environ Res Public Health ; 18(5)2021 03 05.
Article in English | MEDLINE | ID: covidwho-1129722

ABSTRACT

The global COVID-19 pandemic has led to drastic changes in the management of patients with rheumatic diseases. Due to the imminent risk of infection, monitoring intervals of rheumatic patients have prolonged. The aim of this study is to present insights from patients, rheumatologists, and digital product developers on the ongoing digital health transition in rheumatology. A qualitative and participatory semi-structured fishbowl approach was conducted to gain detailed insights from a total of 476 participants. The main findings show that digital health and remote care are generally welcomed by the participants. Five key themes emerged from the qualitative content analysis: (1) digital rheumatology use cases, (2) user descriptions, (3) adaptation to different environments of rheumatology care, and (4) potentials of and (5) barriers to digital rheumatology implementation. Codes were scaled by positive and negative ratings as well as on micro, meso, and macro levels. A main recommendation resulting from the insights is that both patients and rheumatologists need more information and education to successfully implement digital health tools into clinical routine.


Subject(s)
COVID-19 , Rheumatology , Telemedicine , Health Transition , Humans , Pandemics , Qualitative Research , SARS-CoV-2
17.
Nat Commun ; 12(1): 1112, 2021 02 18.
Article in English | MEDLINE | ID: covidwho-1091491

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a worldwide health threat. In a prospective multicentric study, we identify IL-3 as an independent prognostic marker for the outcome during SARS-CoV-2 infections. Specifically, low plasma IL-3 levels is associated with increased severity, viral load, and mortality during SARS-CoV-2 infections. Patients with severe COVID-19 exhibit also reduced circulating plasmacytoid dendritic cells (pDCs) and low plasma IFNα and IFNλ levels when compared to non-severe COVID-19 patients. In a mouse model of pulmonary HSV-1 infection, treatment with recombinant IL-3 reduces viral load and mortality. Mechanistically, IL-3 increases innate antiviral immunity by promoting the recruitment of circulating pDCs into the airways by stimulating CXCL12 secretion from pulmonary CD123+ epithelial cells, both, in mice and in COVID-19 negative patients exhibiting pulmonary diseases. This study identifies IL-3 as a predictive disease marker for SARS-CoV-2 infections and as a potential therapeutic target for pulmunory viral infections.


Subject(s)
COVID-19/diagnosis , Interleukin-3/blood , Animals , COVID-19/mortality , Chemokine CXCL12/immunology , Dendritic Cells/cytology , Disease Models, Animal , Female , Germany , Humans , Immunity, Innate , Interferons/blood , Lung/immunology , Lung/virology , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout , Prospective Studies , Severity of Illness Index , T-Lymphocytes/cytology , Viral Load
18.
Cells ; 9(12)2020 12 12.
Article in English | MEDLINE | ID: covidwho-971834

ABSTRACT

Infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) leads to an adaptive immune response in the host and the formation of anti-SARS-CoV-2 specific antibodies. While IgG responses against SARS-CoV-2 have been characterized quite well, less is known about IgA. IgA2 activates immune cells and induces inflammation and neutrophil extracellular trap (NET) formation which may contribute to organ injury and fatal outcome in SARS-CoV-2-infected patients. SARS-CoV-2 spike protein specific antibody levels were measured in plasma samples of 15 noninfected controls and 82 SARS-CoV-2-infected patients with no or mild symptoms, moderate symptoms (hospitalization) or severe disease (intensive care unit, ICU). Antibody levels were compared to levels of C-reactive protein (CRP) and circulating extracellular DNA (ecDNA) as markers for general inflammation and NET formation, respectively. While levels of SARS-CoV-2-specific IgG were similar in all patient groups, IgA2 antibodies were restricted to severe disease and showed the strongest discrimination between nonfatal and fatal outcome in patients with severe SARS-CoV-2 infection. While anti-SARS-CoV-2 IgG and IgA2 levels correlated with CRP levels in severely diseased patients, only anti-SARS-CoV-2 IgA2 correlated with ecDNA. These data suggest that the formation of anti-SARS-CoV-2 IgA2 during SARS-CoV-2 infection is a marker for more severe disease related to NET formation and poor outcome.


Subject(s)
Antibodies, Viral/blood , COVID-19/immunology , Extracellular Traps/immunology , Immunoglobulin A/blood , Spike Glycoprotein, Coronavirus/immunology , Adult , Aged , Aged, 80 and over , Biomarkers/blood , C-Reactive Protein/immunology , COVID-19/epidemiology , Case-Control Studies , Cell-Free Nucleic Acids/blood , Female , Humans , Male , Middle Aged , SARS-CoV-2 , Severity of Illness Index , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL