Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Sensors (Basel) ; 21(24)2021 Dec 20.
Article in English | MEDLINE | ID: covidwho-1580509

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic has affected hundreds of millions of individuals and caused millions of deaths worldwide. Predicting the clinical course of the disease is of pivotal importance to manage patients. Several studies have found hematochemical alterations in COVID-19 patients, such as inflammatory markers. We retrospectively analyzed the anamnestic data and laboratory parameters of 303 patients diagnosed with COVID-19 who were admitted to the Polyclinic Hospital of Bari during the first phase of the COVID-19 global pandemic. After the pre-processing phase, we performed a survival analysis with Kaplan-Meier curves and Cox Regression, with the aim to discover the most unfavorable predictors. The target outcomes were mortality or admission to the intensive care unit (ICU). Different machine learning models were also compared to realize a robust classifier relying on a low number of strongly significant factors to estimate the risk of death or admission to ICU. From the survival analysis, it emerged that the most significant laboratory parameters for both outcomes was C-reactive protein min; HR=17.963 (95% CI 6.548-49.277, p < 0.001) for death, HR=1.789 (95% CI 1.000-3.200, p = 0.050) for admission to ICU. The second most important parameter was Erythrocytes max; HR=1.765 (95% CI 1.141-2.729, p < 0.05) for death, HR=1.481 (95% CI 0.895-2.452, p = 0.127) for admission to ICU. The best model for predicting the risk of death was the decision tree, which resulted in ROC-AUC of 89.66%, whereas the best model for predicting the admission to ICU was support vector machine, which had ROC-AUC of 95.07%. The hematochemical predictors identified in this study can be utilized as a strong prognostic signature to characterize the severity of the disease in COVID-19 patients.


Subject(s)
COVID-19 , Hospital Mortality , Humans , Machine Learning , Prognosis , Retrospective Studies , SARS-CoV-2 , Survival Analysis
3.
Microorganisms ; 8(11)2020 Nov 02.
Article in English | MEDLINE | ID: covidwho-971452

ABSTRACT

COVID-19 is a viral pandemic caused by the new coronavirus SARS-CoV-2, an enveloped positive stranded RNA virus. The mechanisms of innate immunity, considered as the first line of antiviral defense, is essential towards viruses. A significant role in host defense of the lung, nasal and oral cavities is played by Human epididymis secretory protein 4 (HE4) HE4 has been demonstrated to be serum inflammatory biomarker and to show a role in natural immunity at the level of oral cavity, nasopharynx and respiratory tract with both antimicrobial/antiviral and anti-inflammatory activity. Several biomarkers like IL-6, presepsin (PSP), procalcitonin (PCT), CRP, D-Dimer have showed a good function as predictor factors for the clinical evolution of COVID-19 patients (mild, severe and critical). The aim of this study was to correlate the blood levels of CRP, IL-6, PSP, PCT, D-Dimer with He4, to identify the predictive values of these biomarkers for the evolution of the disease and to evaluate the possible role of HE4 in the defense mechanisms of innate immunity at the level of oral cavity, nasopharynx and respiratory tract. Of 134 patients admitted at COVID hospital of Policlinico-University of Bari, 86 (58 men age 67.6 ± 12.4 and 28 women age 65.7 ± 15.4) fulfilled the inclusion criteria: in particular, 80 patients (93%) showed prodromal symptoms (smell and/or taste dysfunctions) and other typical clinical manifestations and 19 died (13 men age 73.4 ± 7.7 and 6 women age 74.8 ± 6.7). 48 patients were excluded because 13 finished chemotherapy and 6 radiotherapy recently, 5 presented suspected breast carcinoma, 5 suspected lung carcinoma, 6 suspected ovarian carcinoma or ovary cyst, 1 cystic fibrosis, 3 renal fibrosis and 9 were affected by autoimmune diseases in treatment with monoclonal antibodies. The venous sample was taken for each patient on the admission and during the hospital stay. For each patient, six measurements relating to considered parameters were performed. Significant correlations between He4 and IL-6 levels (r = 0.797), between He4 and PSP (r = 0.621), between He4 and PCT (r = 0.447), between He4 and D-Dimer (r = 0.367), between He4 and RCP (r = 0.327) have been found. ROC curves analysis showed an excellent accuracy for He4 (AUC = 0.92) and IL-6 (AUC = 0.91), a very good accuracy for PSP (AUC = 0.81), a good accuracy for PCT (AUC = 0.701) and D-Dimer (AUC = 0.721) and sufficient accuracy for RCP (AUC = 0.616). These results demonstrated the important correlation between He4, IL6 and PSP, an excellent accuracy of He4 and IL6 and showed a probable role of He4 in the innate immunity in particularly at the level of oral cavity, nasopharynx and respiratory tract. Besides He4 together with IL6 might be involved in the onset of smell and/or taste disorders and it might be used as innovative biomarker to monitor clinical evolution of COVID-19 because He4 could indicate a multi-organ involvement.

5.
Microorganisms ; 8(11):1718, 2020.
Article in English | MDPI | ID: covidwho-896520

ABSTRACT

COVID-19 is a viral pandemic caused by the new coronavirus SARS-CoV-2, an enveloped positive stranded RNA virus. The mechanisms of innate immunity, considered as the first line of antiviral defense, is essential towards viruses. A significant role in host defense of the lung, nasal and oral cavities is played by Human epididymis secretory protein 4 (HE4) HE4 has been demonstrated to be serum inflammatory biomarker and to show a role in natural immunity at the level of oral cavity, nasopharynx and respiratory tract with both antimicrobial/antiviral and anti-inflammatory activity. Several biomarkers like IL-6, presepsin (PSP), procalcitonin (PCT), CRP, D-Dimer have showed a good function as predictor factors for the clinical evolution of COVID-19 patients (mild, severe and critical). The aim of this study was to correlate the blood levels of CRP, IL-6, PSP, PCT, D-Dimer with He4, to identify the predictive values of these biomarkers for the evolution of the disease and to evaluate the possible role of HE4 in the defense mechanisms of innate immunity at the level of oral cavity, nasopharynx and respiratory tract. Of 134 patients admitted at COVID hospital of Policlinico—University of Bari, 86 (58 men age 67.6 ±12.4 and 28 women age 65.7 ±15.4) fulfilled the inclusion criteria: in particular, 80 patients (93%) showed prodromal symptoms (smell and/or taste dysfunctions) and other typical clinical manifestations and 19 died (13 men age 73.4 ±7.7 and 6 women age 74.8 ±6.7). 48 patients were excluded because 13 finished chemotherapy and 6 radiotherapy recently, 5 presented suspected breast carcinoma, 5 suspected lung carcinoma, 6 suspected ovarian carcinoma or ovary cyst, 1 cystic fibrosis, 3 renal fibrosis and 9 were affected by autoimmune diseases in treatment with monoclonal antibodies. The venous sample was taken for each patient on the admission and during the hospital stay. For each patient, six measurements relating to considered parameters were performed. Significant correlations between He4 and IL-6 levels (r = 0.797), between He4 and PSP (r = 0.621), between He4 and PCT (r = 0.447), between He4 and D-Dimer (r = 0.367), between He4 and RCP (r = 0.327) have been found. ROC curves analysis showed an excellent accuracy for He4 (AUC = 0.92) and IL-6 (AUC = 0.91), a very good accuracy for PSP (AUC = 0.81), a good accuracy for PCT (AUC = 0.701) and D-Dimer (AUC = 0.721) and sufficient accuracy for RCP (AUC = 0.616). These results demonstrated the important correlation between He4, IL6 and PSP, an excellent accuracy of He4 and IL6 and showed a probable role of He4 in the innate immunity in particularly at the level of oral cavity, nasopharynx and respiratory tract. Besides He4 together with IL6 might be involved in the onset of smell and/or taste disorders and it might be used as innovative biomarker to monitor clinical evolution of COVID-19 because He4 could indicate a multi-organ involvement.

6.
ACS Chem Neurosci ; 11(17): 2774-2781, 2020 09 02.
Article in English | MEDLINE | ID: covidwho-713083

ABSTRACT

The rapid recovery of smell and taste functions in COVID-19 patients could be attributed to a decrease in interleukin-6 levels rather than central nervous system ischemic injury or viral damage to neuronal cells. To correlate interleukin-6 levels in COVID-19 patients with olfactory or gustatory dysfunctions and to investigate the role of IL-6 in the onset of these disorders, this observational study investigated 67 COVID-19 patients with taste or smell disorders or both, who did not require intensive care admission, admitted at COVID Hospital of Policlinico of Bari from March to May 2020. Interleukin-6 was assayed in COVID-19 patients with taste or smell disturbances at the time of admission and at the time of swab negativization. At the same time, patients have been given a specific survey to evaluate the severity of taste and smell disturbances. Of 125 patients with smell or taste dysfunctions at onset of disease, 67 fulfilled the inclusion criteria, while 58 were excluded because 35 of them required intensive care admission, 5 were unable to answer, 5 died, 7 had finished chemotherapy recently, and 5 refused to participate. The evaluation of taste and smell disorders was carried out using a survey performed at the time of admission and at the time of swab negativization. Sinonasal outcome test 22 (SNOT-22) was used as a reference for olfactory function assessment, and Taste and Smell Questionnaire Section of the US NHANES 2011-2014 protocol (CDC 2013b) was used as reference for gustatory function assessment. A venous blood sample was taken for each patient to measure IL-6 levels upon entry and at swab negativization. Interleukin-6 levels in COVID-19 patients in relation to olfactory or gustatory disorders were correlated from the time of their admission to the time of swab negativization. Statistically significant correlations were obtained between the decrease of interleukin-6 levels and the improvement of smell (p value < 0.05) and taste (p = 0.047) functions at swab negativization. The acquired results demonstrate the key role of interleukin-6 in the pathogenesis of chemosensitive disorders in COVID-19 patients.


Subject(s)
Betacoronavirus , Coronavirus Infections/blood , Interleukin-6/blood , Olfaction Disorders/blood , Pneumonia, Viral/blood , Taste Disorders/blood , Aged , Aged, 80 and over , Biomarkers/blood , COVID-19 , Coronavirus Infections/complications , Coronavirus Infections/diagnosis , Female , Health Surveys/methods , Humans , Interleukin-6/physiology , Male , Middle Aged , Olfaction Disorders/diagnosis , Olfaction Disorders/etiology , Pandemics , Pneumonia, Viral/complications , Pneumonia, Viral/diagnosis , SARS-CoV-2 , Taste/physiology , Taste Disorders/diagnosis , Taste Disorders/etiology
SELECTION OF CITATIONS
SEARCH DETAIL