Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
EuropePMC; 2020.
Preprint in English | EuropePMC | ID: ppcovidwho-319204

ABSTRACT

Since May 2020, several COVID-19 outbreaks have occurred in the German meat industry despite various protective measures, and temperature and ventilation conditions were considered as possible high-risk factors. This cross-sectional study examined meat and poultry plants to examine possible risk factors. Companies completed a self-administered questionnaire on the work environment and protective measures taken to prevent SARS-CoV-2 infection. Multivariable logistic regression analysis adjusted for the possibility to distance at least 1.5 meters, break rules, and employment status was performed to identify risk factors associated with COVID-19 cases. Twenty-two meat and poultry plants with 19,072 employees participated. The prevalence of COVID-19 in the seven plants with more than 10 cases was 12.1% and was highest in the deboning and meat cutting area with 16.1%. A subsample analysis where information on maximal ventilation rate per employee was available revealed an effect for ventilation rate (adjusted odds ratio (AOR) 0.996, 95% CI 0.993-0.999). When including temperature as an interaction term in the working area, the effect of the ventilation rate did not change. Increasing room temperatures resulted in a lower chance of obtaining a positive COVID-19 test result (AOR 0.90 95% CI 0.82-0.99), and a 0.1% greater chance of a positive COVID-19 test for the interaction term (AOR 1.001, 95% CI 1.000-1.003). Our results further indicate that climate conditions and low outdoor air flow are factors that can promote the spread of SARS-CoV-2 aerosols. A possible requirement for pandemic mitigation strategies in industrial workplace settings is to increase the ventilation rate.

2.
PLoS One ; 16(6): e0242456, 2021.
Article in English | MEDLINE | ID: covidwho-1264207

ABSTRACT

Since May 2020, several COVID-19 outbreaks have occurred in the German meat industry despite various protective measures, and temperature and ventilation conditions were considered as possible high-risk factors. This cross-sectional study examined meat and poultry plants to assess possible risk factors. Companies completed a self-administered questionnaire on the work environment and protective measures taken to prevent SARS-CoV-2 infection. Multivariable logistic regression analysis adjusted for the possibility to distance at least 1.5 meters, break rules, and employment status was performed to identify risk factors associated with COVID-19 cases. Twenty-two meat and poultry plants with 19,072 employees participated. The prevalence of COVID-19 in the seven plants with more than 10 cases was 12.1% and was highest in the deboning and meat cutting area with 16.1%. A subsample analysis where information on maximal ventilation rate per employee was available revealed an association with the ventilation rate (adjusted odds ratio (AOR) 0.996, 95% CI 0.993-0.999). When including temperature as an interaction term in the working area, the association with the ventilation rate did not change. When room temperatures increased, the chance of testing positive for COVID-19 (AOR 0.90 95% CI 0.82-0.99) decreased, and the chance for testing positive for COVID-19for the interaction term (AOR 1.001, 95% CI 1.000-1.003) increased. Employees who work where a minimum distance of less than 1.5 m between workers was the norm had a higher chance of testing positive (AOR 3.61; 95% CI 2.83-4.6). Our results further indicate that climate conditions and low outdoor air flow are factors that can promote the spread of SARS-CoV-2 aerosols. A possible requirement for pandemic mitigation strategies in industrial workplace settings is to increase the ventilation rate.


Subject(s)
COVID-19/transmission , Food Industry , Workplace , COVID-19/epidemiology , Cross-Sectional Studies , Disease Outbreaks , Employment , Food Industry/organization & administration , Germany/epidemiology , Humans , Meat Products/supply & distribution , Risk Factors , SARS-CoV-2/isolation & purification , Temperature , Ventilation , Workplace/organization & administration
3.
Cell Rep Med ; 2(6): 100321, 2021 06 15.
Article in English | MEDLINE | ID: covidwho-1253745

ABSTRACT

The pathogenesis of severe coronavirus disease 2019 (COVID-19) remains poorly understood. While several studies suggest that immune dysregulation plays a central role, the key mediators of this process are yet to be defined. Here, we demonstrate that plasma from a high proportion (93%) of critically ill COVID-19 patients, but not healthy controls, contains broadly auto-reactive immunoglobulin M (IgM) and less frequently auto-reactive IgG or IgA. Importantly, these auto-IgMs preferentially recognize primary human lung cells in vitro, including pulmonary endothelial and epithelial cells. By using a combination of flow cytometry, analytical proteome microarray technology, and lactose dehydrogenase (LDH)-release cytotoxicity assays, we identify high-affinity, complement-fixing, auto-reactive IgM directed against 260 candidate autoantigens, including numerous molecules preferentially expressed on the cellular membranes of pulmonary, vascular, gastrointestinal, and renal tissues. These findings suggest that broad IgM-mediated autoimmune reactivity may be involved in the pathogenesis of severe COVID-19, thereby identifying a potential target for therapeutic interventions.


Subject(s)
Autoantibodies/immunology , COVID-19/pathology , Immunoglobulin M/immunology , Autoantibodies/blood , COVID-19/immunology , COVID-19/virology , Cell Line , Complement C4/metabolism , Critical Illness , Humans , Immunoglobulin M/blood , Intensive Care Units , Lung/metabolism , Protein Array Analysis , Proteome/analysis , SARS-CoV-2/isolation & purification
4.
Am J Health Syst Pharm ; 78(17): 1551-1552, 2021 08 30.
Article in English | MEDLINE | ID: covidwho-1169629
SELECTION OF CITATIONS
SEARCH DETAIL