Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Add filters

Document Type
Year range
Cell Rep ; 37(13): 110169, 2021 12 28.
Article in English | MEDLINE | ID: covidwho-1616407


The importance of pre-existing immune responses to seasonal endemic coronaviruses (HCoVs) for the susceptibility to SARS-CoV-2 infection and the course of COVID-19 is the subject of an ongoing scientific debate. Recent studies postulate that immune responses to previous HCoV infections can either have a slightly protective or no effect on SARS-CoV-2 pathogenesis and, consequently, be neglected for COVID-19 risk stratification. Challenging this notion, we provide evidence that pre-existing, anti-nucleocapsid antibodies against endemic α-coronaviruses and S2 domain-specific anti-spike antibodies against ß-coronavirus HCoV-OC43 are elevated in patients with COVID-19 compared to pre-pandemic donors. This finding is particularly pronounced in males and in critically ill patients. Longitudinal evaluation reveals that antibody cross-reactivity or polyclonal stimulation by SARS-CoV-2 infection are unlikely to be confounders. Thus, specific pre-existing immunity to seasonal coronaviruses may increase susceptibility to SARS-CoV-2 and predispose individuals to an adverse COVID-19 outcome, guiding risk management and supporting the development of universal coronavirus vaccines.

COVID-19/immunology , Coronavirus/immunology , SARS-CoV-2/immunology , Adult , Antibodies/immunology , Antibodies, Viral/immunology , COVID-19/etiology , Coronavirus Infections/immunology , Coronavirus OC43, Human/immunology , Coronavirus OC43, Human/pathogenicity , Cross Reactions/immunology , Female , Germany , Humans , Immunity, Humoral/immunology , Immunoglobulin G/immunology , Longitudinal Studies , Male , Middle Aged , Pandemics , SARS-CoV-2/pathogenicity , Seasons , Severity of Illness Index , Spike Glycoprotein, Coronavirus/immunology
Cell reports ; 2021.
Article in English | EuropePMC | ID: covidwho-1565013


Wratil et al. find specific antibody responses against seasonal human coronaviruses, which cause the common cold, to be elevated in patients with COVID-19 compared to pre-pandemic blood donors. This specific immunity is likely pre-existing in patients and increases their susceptibility to SARS-CoV-2 and severity of COVID-19.

Euro Surveill ; 26(43)2021 10.
Article in English | MEDLINE | ID: covidwho-1547185


BackgroundIn the SARS-CoV-2 pandemic, viral genomes are available at unprecedented speed, but spatio-temporal bias in genome sequence sampling precludes phylogeographical inference without additional contextual data.AimWe applied genomic epidemiology to trace SARS-CoV-2 spread on an international, national and local level, to illustrate how transmission chains can be resolved to the level of a single event and single person using integrated sequence data and spatio-temporal metadata.MethodsWe investigated 289 COVID-19 cases at a university hospital in Munich, Germany, between 29 February and 27 May 2020. Using the ARTIC protocol, we obtained near full-length viral genomes from 174 SARS-CoV-2-positive respiratory samples. Phylogenetic analyses using the Auspice software were employed in combination with anamnestic reporting of travel history, interpersonal interactions and perceived high-risk exposures among patients and healthcare workers to characterise cluster outbreaks and establish likely scenarios and timelines of transmission.ResultsWe identified multiple independent introductions in the Munich Metropolitan Region during the first weeks of the first pandemic wave, mainly by travellers returning from popular skiing areas in the Alps. In these early weeks, the rate of presumable hospital-acquired infections among patients and in particular healthcare workers was high (9.6% and 54%, respectively) and we illustrated how transmission chains can be dissected at high resolution combining virus sequences and spatio-temporal networks of human interactions.ConclusionsEarly spread of SARS-CoV-2 in Europe was catalysed by superspreading events and regional hotspots during the winter holiday season. Genomic epidemiology can be employed to trace viral spread and inform effective containment strategies.

COVID-19 , Cross Infection , Cross Infection/epidemiology , Genome, Viral , Genomics , Germany/epidemiology , Hospitals , Humans , Phylogeny , SARS-CoV-2
Infection ; 2021 Oct 30.
Article in English | MEDLINE | ID: covidwho-1491465


PURPOSE: To investigate the expression of the receptor protein ACE-2 alongside the urinary tract, urinary shedding and urinary stability of SARS-CoV-2 RNA. METHODS: Immunohistochemical staining was performed on tissue from urological surgery of 10 patients. Further, patients treated for coronavirus disease (COVID-19) at specialized care-units of a university hospital were assessed for detection of SARS-CoV-2 RNA in urinary samples via PCR, disease severity (WHO score), inflammatory response of patients. Finally, the stability of SARS-CoV-2 RNA in urine was analyzed. RESULTS: High ACE-2 expression (3/3) was observed in the tubules of the kidney and prostate glands, moderate expression in urothelial cells of the bladder (0-2/3) and no expression in kidney glomeruli, muscularis of the bladder and stroma of the prostate (0/3). SARS-CoV-2 RNA was detected in 5/199 urine samples from 64 patients. Viral RNA was detected in the first urinary sample of sequential samples. Viral RNA load from other specimen as nasopharyngeal swabs (NPS) or endotracheal aspirates revealed higher levels than from urine. Detection of SARS-CoV-2 RNA in urine was not associated with impaired WHO score (median 5, range 3-8 vs median 4, range 1-8, p = 0.314), peak white blood cell count (median 24.1 × 1000/ml, range 5.19-48.1 versus median 11.9 × 1000/ml, range 2.9-60.3, p = 0.307), peak CRP (median 20.7 mg/dl, 4.2-40.2 versus median 11.9 mg/dl, range 0.1-51.9, p = 0.316) or peak IL-6 levels (median: 1442 ng/ml, range 26.7-3918 versus median 140 ng/ml, range 3.0-11,041, p = 0.099). SARS-CoV-2 RNA was stable under different storage conditions and after freeze-thaw cycles. CONCLUSIONS: SARS-CoV-2 RNA in the urine of COVID-19 patients occurs infrequently. The viral RNA load and dynamics of SARS-CoV-2 RNA shedding suggest no relevant route of transmission through the urinary tract.