Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
EuropePMC; 2022.
Preprint in English | EuropePMC | ID: ppcovidwho-331848

ABSTRACT

Vaccines are the most important means to overcome the SARS–CoV–2 pandemic. They induce specific antibody and T–cell responses but it remains open how well vaccine-induced immunity is preserved over time following homologous and heterologous immunization regimens. Here, we compared the dynamics of humoral and cellular immune responses up to 5 months after homologous or heterologous vaccination with either ChAdOx1–nCoV–19 (ChAd) or BNT162b2 (BNT) or both. Antibody responses significantly waned after vaccination, irrespective of the regimen. The capacity to neutralize SARS-CoV–2 – including variants of concern such as Delta or Omicron – was superior after heterologous compared to homologous BNT vaccination, both of which resulted in longer–lasting humoral immunity than homologous ChAd immunization. T–cell responses showed less waning irrespective of the vaccination regimen. These findings demonstrate that heterologous vaccination with ChAd and BNT is a potent approach to induce long–term humoral and cellular immune protection.

2.
Cell Rep ; 38(2): 110214, 2022 01 11.
Article in English | MEDLINE | ID: covidwho-1588141

ABSTRACT

T cell immunity is crucial for control of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and has been studied widely on a quantitative level. However, the quality of responses, in particular of CD8+ T cells, has only been investigated marginally so far. Here, we isolate T cell receptor (TCR) repertoires specific for immunodominant SARS-CoV-2 epitopes restricted to common human Leukocyte antigen (HLA) class I molecules in convalescent individuals. SARS-CoV-2-specific CD8+ T cells are detected up to 12 months after infection. TCR repertoires are diverse, with heterogeneous functional avidity and cytotoxicity toward virus-infected cells, as demonstrated for TCR-engineered T cells. High TCR functionality correlates with gene signatures that, remarkably, could be retrieved for each epitope:HLA combination analyzed. Overall, our data demonstrate that polyclonal and highly functional CD8+ TCRs-classic features of protective immunity-are recruited upon mild SARS-CoV-2 infection, providing tools to assess the quality of and potentially restore functional CD8+ T cell immunity.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , COVID-19/immunology , Receptors, Antigen, T-Cell/immunology , SARS-CoV-2/immunology , Adult , Cells, Cultured , Cross Reactions/immunology , Epitopes, T-Lymphocyte/immunology , Female , Humans , Immunodominant Epitopes/immunology , Leukocytes, Mononuclear/immunology , Leukocytes, Mononuclear/virology , Male , Spike Glycoprotein, Coronavirus/immunology , T-Lymphocytes, Cytotoxic/immunology
3.
Vaccines (Basel) ; 9(10)2021 Sep 24.
Article in English | MEDLINE | ID: covidwho-1438758

ABSTRACT

mRNA vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), such as BNT162b2 (Comirnaty®), have proven to be highly immunogenic and efficient but also show marked reactogenicity, leading to adverse effects (AEs). Here, we analyzed whether the severity of AEs predicts the antibody response against the SARS-CoV-2 spike protein. Healthcare workers without prior SARS-CoV-2 infection, who received a prime-boost vaccination with BNT162b2, completed a standardized electronic questionnaire on the duration and severity of AEs. Serum specimens were collected two to four weeks after the boost vaccination and tested with the COVID-19 ELISA IgG (Vircell-IgG), the LIAISON® SARS-CoV-2 S1/S2 IgG CLIA (DiaSorin-IgG) and the iFlash-2019-nCoV NAb surrogate neutralization assay (Yhlo-NAb). A penalized linear regression model fitted by machine learning was used to correlate AEs with antibody levels. Eighty subjects were enrolled in the study. Systemic, but not local, AEs occurred more frequently after the boost vaccination. Elevated SARS-CoV-2 IgG antibody levels were measured in 92.5% of subjects with Vircell-IgG and in all subjects with DiaSorin-IgG and Yhlo-NAb. Gender, age and BMI showed no association with the antibody levels or with the AEs. The linear regression model identified headache, malaise and nausea as AEs with the greatest variable importance for higher antibody levels (Vircell-IgG and DiaSorin-IgG). However, the model performance for predicting antibody levels from AEs was very low for Vircell-IgG (squared correlation coefficient r2 = 0.04) and DiaSorin-IgG (r2 = 0.06). AEs did not predict the surrogate neutralization (Yhlo-NAb) results. In conclusion, AEs correlate only weakly with the SARS-CoV-2 spike protein antibody levels after COVID-19 vaccination with BNT162b2 mRNA.

5.
Nat Commun ; 12(1): 4515, 2021 07 26.
Article in English | MEDLINE | ID: covidwho-1327196

ABSTRACT

The in vivo phenotypic profile of T cells reactive to severe acute respiratory syndrome (SARS)-CoV-2 antigens remains poorly understood. Conventional methods to detect antigen-reactive T cells require in vitro antigenic re-stimulation or highly individualized peptide-human leukocyte antigen (pHLA) multimers. Here, we use single-cell RNA sequencing to identify and profile SARS-CoV-2-reactive T cells from Coronavirus Disease 2019 (COVID-19) patients. To do so, we induce transcriptional shifts by antigenic stimulation in vitro and take advantage of natural T cell receptor (TCR) sequences of clonally expanded T cells as barcodes for 'reverse phenotyping'. This allows identification of SARS-CoV-2-reactive TCRs and reveals phenotypic effects introduced by antigen-specific stimulation. We characterize transcriptional signatures of currently and previously activated SARS-CoV-2-reactive T cells, and show correspondence with phenotypes of T cells from the respiratory tract of patients with severe disease in the presence or absence of virus in independent cohorts. Reverse phenotyping is a powerful tool to provide an integrated insight into cellular states of SARS-CoV-2-reactive T cells across tissues and activation states.


Subject(s)
COVID-19/immunology , Gene Expression Profiling/methods , Sequence Analysis, RNA/methods , Single-Cell Analysis/methods , T-Lymphocytes/metabolism , Aged , Aged, 80 and over , CD4-Positive T-Lymphocytes/metabolism , CD4-Positive T-Lymphocytes/virology , COVID-19/epidemiology , COVID-19/virology , Cells, Cultured , Cohort Studies , Female , Humans , Male , Middle Aged , Pandemics , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/immunology , Receptors, Antigen, T-Cell/metabolism , SARS-CoV-2/physiology , T-Lymphocytes/virology
6.
Hemasphere ; 5(7): e603, 2021 Jul.
Article in English | MEDLINE | ID: covidwho-1301392

ABSTRACT

The clinical and immunological impact of B-cell depletion in the context of coronavirus disease 2019 (COVID-19) is unclear. We conducted a prospectively planned analysis of COVID-19 in patients who received B-cell depleting anti-CD20 antibodies and chemotherapy for B-cell lymphomas. The control cohort consisted of age- and sex-matched patients without lymphoma who were hospitalized because of COVID-19. We performed detailed clinical analyses, in-depth cellular and molecular immune profiling, and comprehensive virological studies in 12 patients with available biospecimens. B-cell depleted lymphoma patients had more severe and protracted clinical course (median hospitalization 88 versus 17 d). All patients actively receiving immunochemotherapy (n = 5) required ICU support including long-term mechanical ventilation. Neutrophil recovery following granulocyte colony stimulating factor stimulation coincided with hyperinflammation and clinical deterioration in 4 of the 5 patients. Immune cell profiling and gene expression analysis of peripheral blood mononuclear cells revealed early activation of monocytes/macrophages, neutrophils, and the complement system in B-cell depleted lymphoma patients, with subsequent exacerbation of the inflammatory response and dysfunctional interferon signaling at the time of clinical deterioration of COVID-19. Longitudinal immune cell profiling and functional in vitro assays showed SARS-CoV-2-specific CD8+ and CD4+ T-effector cell responses. Finally, we observed long-term detection of SARS-CoV-2 in respiratory specimens (median 84 versus 12 d) and an inability to mount lasting SARS-CoV-2 antibody responses in B-cell depleted lymphoma patients. In summary, we identified clinically relevant particularities of COVID-19 in lymphoma patients receiving B-cell depleting immunochemotherapies.

SELECTION OF CITATIONS
SEARCH DETAIL