Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Add filters

Document Type
Year range
Eur J Med Res ; 27(1): 255, 2022 Nov 21.
Article in English | MEDLINE | ID: covidwho-2139417


BACKGROUND: The presentation of peptides and the subsequent immune response depend on the MHC characteristics and influence the specificity of the immune response. Several studies have found an association between HLA variants and differential COVID-19 outcomes and have shown that HLA genotypes are associated with differential immune responses against SARS-CoV-2, particularly in severely ill patients. Information, whether HLA haplotypes are associated with the severity or length of the disease in moderately diseased individuals is absent. METHODS: Next-generation sequencing-based HLA typing was performed in 303 female and 231 male non-hospitalized North Rhine Westphalian patients infected with SARS-CoV2 during the first and second wave. For HLA-Class I, we obtained results from 528 patients, and for HLA-Class II from 531. In those patients, who became ill between March 2020 and January 2021, the 22 most common HLA-Class I (HLA-A, -B, -C) or HLA-Class II (HLA -DRB1/3/4, -DQA1, -DQB1) haplotypes were determined. The identified HLA haplotypes as well as the presence of a CCR5Δ32 mutation and number of O and A blood group alleles were associated to disease severity and duration of the disease. RESULTS: The influence of the HLA haplotypes on disease severity and duration was more pronounced than the influence of age, sex, or ABO blood group. These associations were sex dependent. The presence of mutated CCR5 resulted in a longer recovery period in males. CONCLUSION: The existence of certain HLA haplotypes is associated with more severe disease.

COVID-19 , Humans , Male , Female , COVID-19/genetics , HLA-DQ Antigens/genetics , Prognosis , RNA, Viral , SARS-CoV-2 , HLA-DRB1 Chains
Vaccines (Basel) ; 10(7)2022 Jun 29.
Article in English | MEDLINE | ID: covidwho-1917858


PURPOSE: We describe a diagnostic procedure suitable for scheduling (re-)vaccination against severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) according to individual state of humoral immunization. METHODS: To clarify the relation between quantitative antibody measurements and humoral ex vivo immune responsiveness, we monitored 124 individuals before, during and six months after vaccination with Spikevax (Moderna, Cambridge, MA, USA). Antibodies against SARS-CoV-2 spike (S1) protein receptor-binding domain (S1-AB) and against nucleocapsid antigens were measured by chemiluminescent immunoassay (Roche). Virus-neutralizing activities were determined by surrogate assays (NeutraLISA, Euroimmune; cPass, GenScript). Neutralization of SARS-CoV-2 in cell culture (full virus NT) served as an ex vivo correlate for humoral immune responsiveness. RESULTS: Vaccination responses varied considerably. Six months after the second vaccination, participants still positive for the full virus NT were safely determined by S1-AB levels ≥1000 U/mL. The full virus NT-positive fraction of participants with S1-AB levels <1000 U/mL was identified by virus-neutralizing activities >70% as determined by surrogate assays (NeutraLISA or cPas). Participants that were full virus NT-negative and presumably insufficiently protected could thus be identified by a sensitivity of >83% and a specificity of >95%. CONCLUSION: The described diagnostic strategy possibly supports individualized (re-)vaccination schedules based on simple and rapid measurement of serum-based SARS-CoV-2 antibody levels. Our data apply only to WUHAN-type SARS-CoV-2 virus and the current version of the mRNA vaccine from Moderna (Cambridge, MA, USA). Adaptation to other vaccines and more recent SARS-CoV-2 strains will require modification of cut-offs and re-evaluation of sensitivity/specificity.

Eur J Med Res ; 26(1): 107, 2021 Sep 16.
Article in English | MEDLINE | ID: covidwho-1412355


BACKGROUND: COVID-19, the pandemic disease caused by infection with SARS-CoV-2, may take highly variable clinical courses, ranging from symptom-free and pauci-symptomatic to fatal disease. The goal of the current study was to assess the association of COVID-19 clinical courses controlled by patients' adaptive immune responses without progression to severe disease with patients' Human Leukocyte Antigen (HLA) genetics, AB0 blood group antigens, and the presence or absence of near-loss-of-function delta 32 deletion mutant of the C-C chemokine receptor type 5 (CCR5). PATIENT AND METHODS: An exploratory observational study including 157 adult COVID-19 convalescent patients was performed with a median follow-up of 250 days. The impact of different HLA genotypes, AB0 blood group antigens, and the CCR5 mutant CD195 were investigated for their role in the clinical course of COVID-19. In addition, this study addressed levels of severity and morbidity of COVID-19. The association of the immunogenetic background parameters were further related to patients' humoral antiviral immune response patterns by longitudinal observation. RESULTS: Univariate HLA analyses identified putatively protective HLA alleles (HLA class II DRB1*01:01 and HLA class I B*35:01, with a trend for DRB1*03:01). They were associated with reduced durations of disease instead decreased (rather than increased) total anti-S IgG levels. They had a higher virus neutralizing capacity compared to non-carriers. Conversely, analyses also identified HLA alleles (HLA class II DQB1*03:02 und HLA class I B*15:01) not associated with such benefit in the patient cohort of this study. Hierarchical testing by Cox regression analyses confirmed the significance of the protective effect of the HLA alleles identified (when assessed in composite) in terms of disease duration, whereas AB0 blood group antigen heterozygosity was found to be significantly associated with disease severity (rather than duration) in our cohort. A suggestive association of a heterozygous CCR5 delta 32 mutation status with prolonged disease duration was implied by univariate analyses but could not be confirmed by hierarchical multivariate testing. CONCLUSION: The current study shows that the presence of HLA class II DRB1*01:01 and HLA class I B*35:01 is of even stronger association with reduced disease duration in mild and moderate COVID-19 than age or any other potential risk factor assessed. Prospective studies in larger patient populations also including novel SARS-CoV-2 variants will be required to assess the impact of HLA genetics on the capacity of mounting protective vaccination responses in the future.

ABO Blood-Group System/genetics , COVID-19/etiology , HLA Antigens/genetics , Receptors, CCR5/genetics , Adult , Aged , COVID-19/epidemiology , COVID-19/genetics , Female , Genetic Predisposition to Disease , Genotype , HLA-DRB1 Chains/genetics , Histocompatibility Antigens Class I/genetics , Humans , Immunoglobulin G/blood , Male , Middle Aged , Morbidity , Mutation , Severity of Illness Index