Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Stat Methods Med Res ; 31(9): 1656-1674, 2022 09.
Article in English | MEDLINE | ID: covidwho-1932991

ABSTRACT

We compare two multi-state modelling frameworks that can be used to represent dates of events following hospital admission for people infected during an epidemic. The methods are applied to data from people admitted to hospital with COVID-19, to estimate the probability of admission to intensive care unit, the probability of death in hospital for patients before and after intensive care unit admission, the lengths of stay in hospital, and how all these vary with age and gender. One modelling framework is based on defining transition-specific hazard functions for competing risks. A less commonly used framework defines partially-latent subpopulations who will experience each subsequent event, and uses a mixture model to estimate the probability that an individual will experience each event, and the distribution of the time to the event given that it occurs. We compare the advantages and disadvantages of these two frameworks, in the context of the COVID-19 example. The issues include the interpretation of the model parameters, the computational efficiency of estimating the quantities of interest, implementation in software and assessing goodness of fit. In the example, we find that some groups appear to be at very low risk of some events, in particular intensive care unit admission, and these are best represented by using 'cure-rate' models to define transition-specific hazards. We provide general-purpose software to implement all the models we describe in the flexsurv R package, which allows arbitrarily flexible distributions to be used to represent the cause-specific hazards or times to events.


Subject(s)
COVID-19 , Hospitalization , Hospitals , Humans , Intensive Care Units , Probability
2.
J R Stat Soc Ser C Appl Stat ; 2022 Jun 15.
Article in English | MEDLINE | ID: covidwho-1896032

ABSTRACT

Understanding the trajectory of the daily number of COVID-19 deaths is essential to decisions on how to respond to the pandemic, but estimating this trajectory is complicated by the delay between deaths occurring and being reported. In England the delay is typically several days, but it can be weeks. This causes considerable uncertainty about how many deaths occurred in recent days. Here we estimate the deaths per day in five age strata within seven English regions, using a Bayesian model that accounts for reporting-day effects and longer-term changes in the delay distribution. We show how the model can be computationally efficiently fitted when the delay distribution is the same in multiple strata, for example, over a wide range of ages.

3.
Stat Methods Med Res ; 31(10): 1942-1958, 2022 10.
Article in English | MEDLINE | ID: covidwho-1886865

ABSTRACT

When comparing the risk of a post-infection binary outcome, for example, hospitalisation, for two variants of an infectious pathogen, it is important to adjust for calendar time of infection. Typically, the infection time is unknown and positive test time used as a proxy for it. Positive test time may also be used when assessing how risk of the outcome changes over calendar time. We show that if time from infection to positive test is correlated with the outcome, the risk conditional on positive test time is a function of the trajectory of infection incidence. Hence, a risk ratio adjusted for positive test time can be quite different from the risk ratio adjusted for infection time. We propose a simple sensitivity analysis that indicates how risk ratios adjusted for positive test time and infection time may differ. This involves adjusting for a shifted positive test time, shifted to make the difference between it and infection time uncorrelated with the outcome. We illustrate this method by reanalysing published results on the relative risk of hospitalisation following infection with the Alpha versus pre-existing variants of SARS-CoV-2. Results indicate the relative risk adjusted for infection time may be lower than that adjusted for positive test time.


Subject(s)
COVID-19 , Epidemics , COVID-19/epidemiology , Humans , SARS-CoV-2
4.
J Infect Dis ; 226(5): 808-811, 2022 09 13.
Article in English | MEDLINE | ID: covidwho-1758754

ABSTRACT

To investigate if the AY.4.2 sublineage of the SARS-CoV-2 delta variant is associated with hospitalization and mortality risks that differ from non-AY.4.2 delta risks, we performed a retrospective cohort study of sequencing-confirmed COVID-19 cases in England based on linkage of routine health care datasets. Using stratified Cox regression, we estimated adjusted hazard ratios (aHR) of hospital admission (aHR = 0.85; 95% confidence interval [CI], .77-.94), hospital admission or emergency care attendance (aHR = 0.87; 95% CI, .81-.94), and COVID-19 mortality (aHR = 0.85; 95% CI, .71-1.03). The results indicate that the risks of hospitalization and mortality are similar or lower for AY.4.2 compared to cases with other delta sublineages.


Subject(s)
COVID-19 , SARS-CoV-2 , Hospitalization , Humans , Retrospective Studies
5.
Lancet ; 399(10332): 1303-1312, 2022 04 02.
Article in English | MEDLINE | ID: covidwho-1740323

ABSTRACT

BACKGROUND: The omicron variant (B.1.1.529) of SARS-CoV-2 has demonstrated partial vaccine escape and high transmissibility, with early studies indicating lower severity of infection than that of the delta variant (B.1.617.2). We aimed to better characterise omicron severity relative to delta by assessing the relative risk of hospital attendance, hospital admission, or death in a large national cohort. METHODS: Individual-level data on laboratory-confirmed COVID-19 cases resident in England between Nov 29, 2021, and Jan 9, 2022, were linked to routine datasets on vaccination status, hospital attendance and admission, and mortality. The relative risk of hospital attendance or admission within 14 days, or death within 28 days after confirmed infection, was estimated using proportional hazards regression. Analyses were stratified by test date, 10-year age band, ethnicity, residential region, and vaccination status, and were further adjusted for sex, index of multiple deprivation decile, evidence of a previous infection, and year of age within each age band. A secondary analysis estimated variant-specific and vaccine-specific vaccine effectiveness and the intrinsic relative severity of omicron infection compared with delta (ie, the relative risk in unvaccinated cases). FINDINGS: The adjusted hazard ratio (HR) of hospital attendance (not necessarily resulting in admission) with omicron compared with delta was 0·56 (95% CI 0·54-0·58); for hospital admission and death, HR estimates were 0·41 (0·39-0·43) and 0·31 (0·26-0·37), respectively. Omicron versus delta HR estimates varied with age for all endpoints examined. The adjusted HR for hospital admission was 1·10 (0·85-1·42) in those younger than 10 years, decreasing to 0·25 (0·21-0·30) in 60-69-year-olds, and then increasing to 0·47 (0·40-0·56) in those aged at least 80 years. For both variants, past infection gave some protection against death both in vaccinated (HR 0·47 [0·32-0·68]) and unvaccinated (0·18 [0·06-0·57]) cases. In vaccinated cases, past infection offered no additional protection against hospital admission beyond that provided by vaccination (HR 0·96 [0·88-1·04]); however, for unvaccinated cases, past infection gave moderate protection (HR 0·55 [0·48-0·63]). Omicron versus delta HR estimates were lower for hospital admission (0·30 [0·28-0·32]) in unvaccinated cases than the corresponding HR estimated for all cases in the primary analysis. Booster vaccination with an mRNA vaccine was highly protective against hospitalisation and death in omicron cases (HR for hospital admission 8-11 weeks post-booster vs unvaccinated: 0·22 [0·20-0·24]), with the protection afforded after a booster not being affected by the vaccine used for doses 1 and 2. INTERPRETATION: The risk of severe outcomes following SARS-CoV-2 infection is substantially lower for omicron than for delta, with higher reductions for more severe endpoints and significant variation with age. Underlying the observed risks is a larger reduction in intrinsic severity (in unvaccinated individuals) counterbalanced by a reduction in vaccine effectiveness. Documented previous SARS-CoV-2 infection offered some protection against hospitalisation and high protection against death in unvaccinated individuals, but only offered additional protection in vaccinated individuals for the death endpoint. Booster vaccination with mRNA vaccines maintains over 70% protection against hospitalisation and death in breakthrough confirmed omicron infections. FUNDING: Medical Research Council, UK Research and Innovation, Department of Health and Social Care, National Institute for Health Research, Community Jameel, and Engineering and Physical Sciences Research Council.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , COVID-19/prevention & control , Cohort Studies , England/epidemiology , Hospitalization , Humans , Vaccines, Synthetic , mRNA Vaccines
6.
Lancet Infect Dis ; 22(1): 35-42, 2022 01.
Article in English | MEDLINE | ID: covidwho-1598838

ABSTRACT

BACKGROUND: The SARS-CoV-2 delta (B.1.617.2) variant was first detected in England in March, 2021. It has since rapidly become the predominant lineage, owing to high transmissibility. It is suspected that the delta variant is associated with more severe disease than the previously dominant alpha (B.1.1.7) variant. We aimed to characterise the severity of the delta variant compared with the alpha variant by determining the relative risk of hospital attendance outcomes. METHODS: This cohort study was done among all patients with COVID-19 in England between March 29 and May 23, 2021, who were identified as being infected with either the alpha or delta SARS-CoV-2 variant through whole-genome sequencing. Individual-level data on these patients were linked to routine health-care datasets on vaccination, emergency care attendance, hospital admission, and mortality (data from Public Health England's Second Generation Surveillance System and COVID-19-associated deaths dataset; the National Immunisation Management System; and NHS Digital Secondary Uses Services and Emergency Care Data Set). The risk for hospital admission and emergency care attendance were compared between patients with sequencing-confirmed delta and alpha variants for the whole cohort and by vaccination status subgroups. Stratified Cox regression was used to adjust for age, sex, ethnicity, deprivation, recent international travel, area of residence, calendar week, and vaccination status. FINDINGS: Individual-level data on 43 338 COVID-19-positive patients (8682 with the delta variant, 34 656 with the alpha variant; median age 31 years [IQR 17-43]) were included in our analysis. 196 (2·3%) patients with the delta variant versus 764 (2·2%) patients with the alpha variant were admitted to hospital within 14 days after the specimen was taken (adjusted hazard ratio [HR] 2·26 [95% CI 1·32-3·89]). 498 (5·7%) patients with the delta variant versus 1448 (4·2%) patients with the alpha variant were admitted to hospital or attended emergency care within 14 days (adjusted HR 1·45 [1·08-1·95]). Most patients were unvaccinated (32 078 [74·0%] across both groups). The HRs for vaccinated patients with the delta variant versus the alpha variant (adjusted HR for hospital admission 1·94 [95% CI 0·47-8·05] and for hospital admission or emergency care attendance 1·58 [0·69-3·61]) were similar to the HRs for unvaccinated patients (2·32 [1·29-4·16] and 1·43 [1·04-1·97]; p=0·82 for both) but the precision for the vaccinated subgroup was low. INTERPRETATION: This large national study found a higher hospital admission or emergency care attendance risk for patients with COVID-19 infected with the delta variant compared with the alpha variant. Results suggest that outbreaks of the delta variant in unvaccinated populations might lead to a greater burden on health-care services than the alpha variant. FUNDING: Medical Research Council; UK Research and Innovation; Department of Health and Social Care; and National Institute for Health Research.


Subject(s)
COVID-19/virology , Emergency Medical Services/statistics & numerical data , Hospitalization/statistics & numerical data , SARS-CoV-2/pathogenicity , Severity of Illness Index , Adolescent , Adult , Aged , Aged, 80 and over , COVID-19/epidemiology , Child , Child, Preschool , Cohort Studies , England/epidemiology , Female , Humans , Male , Middle Aged , Proportional Hazards Models , SARS-CoV-2/classification , Young Adult
7.
Stat Methods Med Res ; 31(9): 1641-1655, 2022 09.
Article in English | MEDLINE | ID: covidwho-1582665

ABSTRACT

Time-to-event data are right-truncated if only individuals who have experienced the event by a certain time can be included in the sample. For example, we may be interested in estimating the distribution of time from onset of disease symptoms to death and only have data on individuals who have died. This may be the case, for example, at the beginning of an epidemic. Right truncation causes the distribution of times to event in the sample to be biased towards shorter times compared to the population distribution, and appropriate statistical methods should be used to account for this bias. This article is a review of such methods, particularly in the context of an infectious disease epidemic, like COVID-19. We consider methods for estimating the marginal time-to-event distribution, and compare their efficiencies. (Non-)identifiability of the distribution is an important issue with right-truncated data, particularly at the beginning of an epidemic, and this is discussed in detail. We also review methods for estimating the effects of covariates on the time to event. An illustration of the application of many of these methods is provided, using data on individuals who had died with coronavirus disease by 5 April 2020.


Subject(s)
COVID-19 , Models, Statistical , Bias , COVID-19/epidemiology , Data Interpretation, Statistical , Humans , Survival Analysis
8.
BMJ ; 373: n1412, 2021 06 15.
Article in English | MEDLINE | ID: covidwho-1270886

ABSTRACT

OBJECTIVE: To evaluate the relation between diagnosis of covid-19 with SARS-CoV-2 variant B.1.1.7 (also known as variant of concern 202012/01) and the risk of hospital admission compared with diagnosis with wild-type SARS-CoV-2 variants. DESIGN: Retrospective cohort analysis. SETTING: Community based SARS-CoV-2 testing in England, individually linked with hospital admission data. PARTICIPANTS: 839 278 patients with laboratory confirmed covid-19, of whom 36 233 had been admitted to hospital within 14 days, tested between 23 November 2020 and 31 January 2021 and analysed at a laboratory with an available TaqPath assay that enables assessment of S-gene target failure (SGTF), a proxy test for the B.1.1.7 variant. Patient data were stratified by age, sex, ethnicity, deprivation, region of residence, and date of positive test. MAIN OUTCOME MEASURES: Hospital admission between one and 14 days after the first positive SARS-CoV-2 test. RESULTS: 27 710 (4.7%) of 592 409 patients with SGTF variants and 8523 (3.5%) of 246 869 patients without SGTF variants had been admitted to hospital within one to 14 days. The stratum adjusted hazard ratio of hospital admission was 1.52 (95% confidence interval 1.47 to 1.57) for patients with covid-19 infected with SGTF variants, compared with those infected with non-SGTF variants. The effect was modified by age (P<0.001), with hazard ratios of 0.93-1.21 in patients younger than 20 years with versus without SGTF variants, 1.29 in those aged 20-29, and 1.45-1.65 in those aged ≥30 years. The adjusted absolute risk of hospital admission within 14 days was 4.7% (95% confidence interval 4.6% to 4.7%) for patients with SGTF variants and 3.5% (3.4% to 3.5%) for those with non-SGTF variants. CONCLUSIONS: The results suggest that the risk of hospital admission is higher for people infected with the B.1.1.7 variant compared with wild-type SARS-CoV-2, likely reflecting a more severe disease. The higher severity may be specific to adults older than 30 years.


Subject(s)
COVID-19/virology , Hospitalization/statistics & numerical data , SARS-CoV-2/pathogenicity , Adolescent , Adult , Age Factors , Aged , Aged, 80 and over , COVID-19/diagnosis , COVID-19/mortality , COVID-19/therapy , COVID-19 Testing , Child , England/epidemiology , Female , Humans , Male , Middle Aged , Proportional Hazards Models , Retrospective Studies , Risk Factors , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL