Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Clin Immunol ; 236: 108961, 2022 03.
Article in English | MEDLINE | ID: covidwho-1705130

ABSTRACT

Patients receiving maintenance dialysis (MD) are vulnerable to COVID-19-related morbidity and mortality. Currently, data on SARS-CoV-2-specific cellular and humoral immunity post-vaccination in this population are scarce. We conducted a prospective single-center study exploring the specific cellular (interferon-γ and interleukin-2 ELISpot assays) and humoral immune responses (dot plot array and chemiluminescent microparticle immunoassay [CMIA]) at 4 weeks and 6 weeks following a single dose or a complete homologous dual dose SARS-CoV-2 vaccine regimen in 60 MD patients (six with a history of COVID-19). Our results show that MD patients exhibit a high seroconversion rate (91.7%) but the anti-spike IgG antibodies (CMIA) tend to wane rapidly after full immunization. Only 51.7% of the patients developed T cell immune response. High anti-spike IgG antibodies may predict a better cellular immunity. While patients with prior COVID-19 showed the best response after one, SARS-CoV-2-naïve patients may benefit from a third vaccine injection.


Subject(s)
COVID-19 Vaccines , COVID-19 , Antibodies, Viral , COVID-19/prevention & control , Humans , Immunity, Humoral , Prospective Studies , RNA, Messenger , Renal Dialysis , SARS-CoV-2
2.
Eur Respir Rev ; 30(161)2021 Sep 30.
Article in English | MEDLINE | ID: covidwho-1412449

ABSTRACT

Acute respiratory distress syndrome (ARDS) is a serious complication of severe systemic or local pulmonary inflammation, such as caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. ARDS is characterised by diffuse alveolar damage that leads to protein-rich pulmonary oedema, local alveolar hypoventilation and atelectasis. Inadequate perfusion of these areas is the main cause of hypoxaemia in ARDS. High perfusion in relation to ventilation (V/Q<1) and shunting (V/Q=0) is not only caused by impaired hypoxic pulmonary vasoconstriction but also redistribution of perfusion from obstructed lung vessels. Rebalancing the pulmonary vascular tone is a therapeutic challenge. Previous clinical trials on inhaled vasodilators (nitric oxide and prostacyclin) to enhance perfusion to high V/Q areas showed beneficial effects on hypoxaemia but not on mortality. However, specific patient populations with pulmonary hypertension may profit from treatment with inhaled vasodilators. Novel treatment targets to decrease perfusion in low V/Q areas include epoxyeicosatrienoic acids and specific leukotriene receptors. Still, lung protective ventilation and prone positioning are the best available standard of care. This review focuses on disturbed perfusion in ARDS and aims to provide basic scientists and clinicians with an overview of the vascular alterations and mechanisms of V/Q mismatch, current therapeutic strategies, and experimental approaches.


Subject(s)
COVID-19 , Respiratory Distress Syndrome , COVID-19/complications , Humans , Hypoxia , Lung/physiopathology , Respiratory Distress Syndrome/diagnosis , Respiratory Distress Syndrome/etiology , Respiratory Distress Syndrome/therapy , SARS-CoV-2 , Vasoconstriction
3.
Int J Environ Res Public Health ; 18(16)2021 08 05.
Article in English | MEDLINE | ID: covidwho-1376804

ABSTRACT

Humans on earth inhabit a wide range of environmental conditions and some environments are more challenging for human survival than others. However, many living beings, including humans, have developed adaptive mechanisms to live in such inhospitable, harsh environments. Among different difficult environments, high-altitude living is especially demanding because of diminished partial pressure of oxygen and resulting chronic hypobaric hypoxia. This results in poor blood oxygenation and reduces aerobic oxidative respiration in the mitochondria, leading to increased reactive oxygen species generation and activation of hypoxia-inducible gene expression. Genetic mechanisms in the adaptation to high altitude is well-studied, but there are only limited studies regarding the role of epigenetic mechanisms. The purpose of this review is to understand the epigenetic mechanisms behind high-altitude adaptive and maladaptive phenotypes. Hypobaric hypoxia is a form of cellular hypoxia, which is similar to the one suffered by critically-ill hypoxemia patients. Thus, understanding the adaptive epigenetic signals operating in in high-altitude adjusted indigenous populations may help in therapeutically modulating signaling pathways in hypoxemia patients by copying the most successful epigenotype. In addition, we have summarized the current information about exosomes in hypoxia research and prospects to use them as diagnostic tools to study the epigenome of high-altitude adapted healthy or maladapted individuals.


Subject(s)
Exosomes , Exposome , Adaptation, Physiological/genetics , Altitude , Epigenesis, Genetic , Exosomes/genetics , Humans , Hypoxia/genetics
6.
Front Med (Lausanne) ; 7: 598379, 2020.
Article in English | MEDLINE | ID: covidwho-954188

ABSTRACT

Coronavirus disease 2019 (COVID-19)-associated acute respiratory distress syndrome (ARDS) is associated with high mortality. Lung-protective ventilation is the current standard of care in patients with ARDS, but it might lead to hypercapnia, which is independently associated with worse outcomes. Extracorporeal carbon dioxide removal (ECCO2R) has been proposed as an adjuvant therapy to avoid progression of clinical severity and limit further ventilator-induced lung injury, but its use in COVID-19 has not been described yet. Acute kidney injury requiring renal replacement therapy (RRT) is common among critically ill COVID-19 patients. In centers with available dialysis, low-flow ECCO2R (<500 mL/min) using RRT platforms could be carried out by dialysis specialists and might be an option to efficiently allocate resources during the COVID-19 pandemic for patients with hypercapnia as the main indication. Here, we report the feasibility, safety, and efficacy of ECCO2R using an RRT platform to provide either standalone ECCO2R or ECCO2R combined with RRT in four hypercapnic patients with moderate ARDS. A randomized clinical trial is required to assess the overall benefit and harm. Clinical Trial Registration: ClinicalTrials.gov. Unique identifier: NCT04351906.

7.
Am J Physiol Lung Cell Mol Physiol ; 320(4): L590-L599, 2021 04 01.
Article in English | MEDLINE | ID: covidwho-945036

ABSTRACT

Despite the pandemic status of COVID-19, there is limited information about host risk factors and treatment beyond supportive care. Immunoglobulin G (IgG) could be a potential treatment target. Our aim was to determine the incidence of IgG deficiency and associated risk factors in a cohort of 62 critically ill patients with COVID-19 admitted to two German ICUs (72.6% male, median age: 61 yr). Thirteen (21.0%) of the patients displayed IgG deficiency (IgG < 7 g/L) at baseline (predominant for the IgG1, IgG2, and IgG4 subclasses). Patients who were IgG-deficient had worse measures of clinical disease severity than those with normal IgG levels (shorter duration from disease onset to ICU admission, lower ratio of [Formula: see text] to [Formula: see text], higher Sequential Organ Failure Assessment score, and higher levels of ferritin, neutrophil-to-lymphocyte ratio, and serum creatinine). Patients who were IgG-deficient were also more likely to have sustained lower levels of lymphocyte counts and higher levels of ferritin throughout the hospital stay. Furthermore, patients who were IgG-deficient compared with those with normal IgG levels displayed higher rates of acute kidney injury (76.9% vs. 26.5%; P = 0.001) and death (46.2% vs. 14.3%; P = 0.012), longer ICU [28 (6-48) vs. 12 (3-18) days; P = 0.012] and hospital length of stay [30 (22-50) vs. 18 (9-24) days; P = 0.004]. Univariable logistic regression showed increasing odds of 90-day overall mortality associated with IgG-deficiency (odds ratio 5.14, 95% confidence interval 1.3-19.9; P = 0.018). IgG deficiency might be common in patients with COVID-19 who are critically ill, and warrants investigation as both a marker of disease severity as well as a potential therapeutic target.


Subject(s)
COVID-19/virology , Immunoglobulins/deficiency , SARS-CoV-2/pathogenicity , Severity of Illness Index , Cohort Studies , Female , Humans , Intensive Care Units , Male , Middle Aged , Risk Factors
8.
Thorax ; 76(2): 201-204, 2021 02.
Article in English | MEDLINE | ID: covidwho-920934

ABSTRACT

Various forms of diffuse parenchymal lung disease have been proposed as potential consequences of severe COVID­19. We describe the clinical, radiological and histological findings of patients with COVID­19-associated acute respiratory distress syndrome who later developed severe organising pneumonia including longitudinal follow-up. Our findings may have important implications for the therapeutic modalities in the late-phase of severe COVID­19 and might partially explain why a subgroup of COVID­19 patients benefits from systemic corticosteroids.


Subject(s)
COVID-19/complications , Lung/diagnostic imaging , Pneumonia/etiology , SARS-CoV-2 , Aged , Biopsy , COVID-19/diagnosis , COVID-19/epidemiology , Humans , Male , Middle Aged , Pneumonia/diagnosis , Tomography, X-Ray Computed
9.
Am J Physiol Lung Cell Mol Physiol ; 319(4): L670-L674, 2020 10 01.
Article in English | MEDLINE | ID: covidwho-798131

ABSTRACT

The severity of coronavirus disease 2019 (COVID-19) is linked to an increasing number of risk factors, including exogenous (environmental) stimuli such as air pollution, nicotine, and cigarette smoke. These three factors increase the expression of angiotensin I converting enzyme 2 (ACE2), a key receptor involved in the entry of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-the etiological agent of COVID-19-into respiratory tract epithelial cells. Patients with severe COVID-19 are managed with oxygen support, as are at-risk individuals with chronic lung disease. To date, no study has examined whether an increased fraction of inspired oxygen (FiO2) may affect the expression of SARS-CoV-2 entry receptors and co-receptors, including ACE2 and the transmembrane serine proteases TMPRSS1, TMPRSS2, and TMPRSS11D. To address this, steady-state mRNA levels for genes encoding these SARS-CoV-2 receptors were assessed in the lungs of mouse pups chronically exposed to elevated FiO2, and in the lungs of preterm-born human infants chronically managed with an elevated FiO2. These two scenarios served as models of chronic elevated FiO2 exposure. Additionally, SARS-CoV-2 receptor expression was assessed in primary human nasal, tracheal, esophageal, bronchial, and alveolar epithelial cells, as well as primary mouse alveolar type II cells exposed to elevated oxygen concentrations. While gene expression of ACE2 was unaffected, gene and protein expression of TMPRSS11D was consistently upregulated by exposure to an elevated FiO2. These data highlight the need for further studies that examine the relative contribution of the various viral co-receptors on the infection cycle, and point to oxygen supplementation as a potential risk factor for COVID-19.


Subject(s)
Coronavirus Infections/pathology , Membrane Proteins/metabolism , Peptidyl-Dipeptidase A/metabolism , Pneumonia, Viral/pathology , Respiratory Mucosa/metabolism , Serine Endopeptidases/metabolism , Serine Proteases/metabolism , Alveolar Epithelial Cells/metabolism , Angiotensin-Converting Enzyme 2 , Animals , Betacoronavirus , COVID-19 , Cells, Cultured , Female , Humans , Male , Membrane Proteins/genetics , Mice , Mice, Inbred C57BL , Oxygen/administration & dosage , Oxygen/analysis , Pandemics , Receptors, Virus/metabolism , Risk Factors , SARS-CoV-2 , Serine Endopeptidases/genetics , Serine Proteases/genetics , Severity of Illness Index
10.
Pulm Circ ; 10(3): 2045894020941682, 2020.
Article in English | MEDLINE | ID: covidwho-684065

ABSTRACT

Pulmonary hypertension is frequently underdiagnosed, and referral is delayed with subsequent impact on outcomes. During the SARS-CoV-2 pandemic, restrictions on daily life and changes in hospitals' daily routine care were introduced in Germany. This multi-centre study provides evidence for a negative influence of these restrictions on patient care in pulmonary hypertension expert referral centres.

SELECTION OF CITATIONS
SEARCH DETAIL