Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
The Lancet regional health. Western Pacific ; 25, 2022.
Article in English | EuropePMC | ID: covidwho-1877437

ABSTRACT

Summary Background COVID-19 has affected many healthcare workers (HCWs) globally. We performed state-wide SARS-CoV-2 genomic epidemiological investigations to identify HCW transmission dynamics and provide recommendations to optimise healthcare system preparedness for future outbreaks. Methods Genome sequencing was attempted on all COVID-19 cases in Victoria, Australia. We combined genomic and epidemiologic data to investigate the source of HCW infections across multiple healthcare facilities (HCFs) in the state. Phylogenetic analysis and fine-scale hierarchical clustering were performed for the entire dataset including community and healthcare cases. Facilities provided standardised epidemiological data and putative transmission links. Findings Between March-October 2020, approximately 1,240 HCW COVID-19 infection cases were identified;765 are included here, requested for hospital investigations. Genomic sequencing was successful for 612 (80%) cases. Thirty-six investigations were undertaken across 12 HCFs. Genomic analysis revealed that multiple introductions of COVID-19 into facilities (31/36) were more common than single introductions (5/36). Major contributors to HCW acquisitions included mobility of staff and patients between wards and facilities, and characteristics and behaviours of patients that generated numerous secondary infections. Key limitations at the HCF level were identified. Interpretation Genomic epidemiological analyses enhanced understanding of HCW infections, revealing unsuspected clusters and transmission networks. Combined analysis of all HCWs and patients in a HCF should be conducted, supported by high rates of sequencing coverage for all cases in the population. Established systems for integrated genomic epidemiological investigations in healthcare settings will improve HCW safety in future pandemics. Funding The Victorian Government, the National Health and Medical Research Council Australia, and the Medical Research Future Fund.

2.
Nat Commun ; 13(1): 2774, 2022 May 19.
Article in English | MEDLINE | ID: covidwho-1852413

ABSTRACT

Respiratory tract infection with SARS-CoV-2 results in varying immunopathology underlying COVID-19. We examine cellular, humoral and cytokine responses covering 382 immune components in longitudinal blood and respiratory samples from hospitalized COVID-19 patients. SARS-CoV-2-specific IgM, IgG, IgA are detected in respiratory tract and blood, however, receptor-binding domain (RBD)-specific IgM and IgG seroconversion is enhanced in respiratory specimens. SARS-CoV-2 neutralization activity in respiratory samples correlates with RBD-specific IgM and IgG levels. Cytokines/chemokines vary between respiratory samples and plasma, indicating that inflammation should be assessed in respiratory specimens to understand immunopathology. IFN-α2 and IL-12p70 in endotracheal aspirate and neutralization in sputum negatively correlate with duration of hospital stay. Diverse immune subsets are detected in respiratory samples, dominated by neutrophils. Importantly, dexamethasone treatment does not affect humoral responses in blood of COVID-19 patients. Our study unveils differential immune responses between respiratory samples and blood, and shows how drug therapy affects immune responses during COVID-19.


Subject(s)
COVID-19 , Antibodies, Viral , Humans , Immunity , Immunoglobulin G , Immunoglobulin M , Respiratory System , SARS-CoV-2 , Severity of Illness Index , Spike Glycoprotein, Coronavirus
3.
Emerg Infect Dis ; 28(7): 1527-1530, 2022 07.
Article in English | MEDLINE | ID: covidwho-1817900

ABSTRACT

Epidemiologic and genomic investigation of SARS-CoV-2 infections associated with 2 repatriation flights from India to Australia in April 2021 indicated that 4 passengers transmitted SARS-CoV-2 to >11 other passengers. Results suggest transmission despite mandatory mask use and predeparture testing. For subsequent flights, predeparture quarantine and expanded predeparture testing were implemented.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , Genome, Viral , Genomics , Humans , Quarantine , SARS-CoV-2/genetics
4.
O'Toole, Áine, Hill, Verity, Pybus, Oliver, Watts, Alexander, Bogoch, Issac, Khan, Kamran, Messina, Jane, Tegally, Houriiyah, Lessells, Richard, Giandhari, Jennifer, Pillay, Sureshnee, Tumedi, Kefentse Arnold, Nyepetsi, Gape, Kebabonye, Malebogo, Matsheka, Maitshwarelo, Mine, Madisa, Tokajian, Sima, Hassan, Hamad, Salloum, Tamara, Merhi, Georgi, Koweyes, Jad, Geoghegan, Jemma, de Ligt, Joep, Ren, Xiaoyun, Storey, Matthew, Freed, Nikki, Pattabiraman, Chitra, Prasad, Pramada, Desai, Anita, Vasanthapuram, Ravi, Schulz, Thomas, Steinbrück, Lars, Stadler, Tanja, Parisi, Antonio, Bianco, Angelica, García de Viedma, Darío, Buenestado-Serrano, Sergio, Borges, Vítor, Isidro, Joana, Duarte, Sílvia, Gomes, João Paulo, Zuckerman, Neta, Mandelboim, Michal, Mor, Orna, Seemann, Torsten, Arnott, Alicia, Draper, Jenny, Gall, Mailie, Rawlinson, William, Deveson, Ira, Schlebusch, Sanmarié, McMahon, Jamie, Leong, Lex, Lim, Chuan Kok, Chironna, Maria, Loconsole, Daniela, Bal, Antonin, Josset, Laurence, Holmes, Edward, St. George, Kirsten, Lasek-Nesselquist, Erica, Sikkema, Reina, Oude Munnink, Bas, Koopmans, Marion, Brytting, Mia, Sudha rani, V.; Pavani, S.; Smura, Teemu, Heim, Albert, Kurkela, Satu, Umair, Massab, Salman, Muhammad, Bartolini, Barbara, Rueca, Martina, Drosten, Christian, Wolff, Thorsten, Silander, Olin, Eggink, Dirk, Reusken, Chantal, Vennema, Harry, Park, Aekyung, Carrington, Christine, Sahadeo, Nikita, Carr, Michael, Gonzalez, Gabo, de Oliveira, Tulio, Faria, Nuno, Rambaut, Andrew, Kraemer, Moritz, The, Covid-Genomics U. K. consortium, Network for Genomic Surveillance in South, Africa, Brazil, U. K. Cadde Genomic Network, Swiss Viollier Sequencing, Consortium, Diego, Search Alliance San, National Virus Reference, Laboratory, Seq, Covid Spain, Danish Covid-19 Genome, Consortium, Communicable Diseases Genomic, Network, Dutch National, Sars-CoV-surveillance program, Division of Emerging Infectious, Diseases.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-318194

ABSTRACT

Late in 2020, two genetically-distinct clusters of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) with mutations of biological concern were reported, one in the United Kingdom and one in South Africa. Using a combination of data from routine surveillance, genomic sequencing and international travel we track the international dispersal of lineages B.1.1.7 and B.1.351 (variant 501Y-V2). We account for potential biases in genomic surveillance efforts by including passenger volumes from location of where the lineage was first reported, London and South Africa respectively. Using the software tool grinch (global report investigating novel coronavirus haplotypes), we track the international spread of lineages of concern with automated daily reports, Further, we have built a custom tracking website (cov-lineages.org/global_report.html) which hosts this daily report and will continue to include novel SARS-CoV-2 lineages of concern as they are detected.

6.
Western Pac Surveill Response J ; 12(4): 1-9, 2021.
Article in English | MEDLINE | ID: covidwho-1638035

ABSTRACT

OBJECTIVE: We undertook an integrated analysis of genomic and epidemiological data to investigate a large health-care-associated outbreak of coronavirus disease 2019 (COVID-19) and to better understand the epidemiology of COVID-19 cases in Tasmania, Australia. METHODS: Epidemiological data collected on COVID-19 cases notified in Tasmania between 2 March and 15 May 2020, and positive samples of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) or RNA extracted from the samples were included. Sequencing was conducted by tiled amplicon polymerase chain reaction with ARTIC v1 or v3 primers and Illumina sequencing. Consensus sequences were generated, sequences were aligned to a reference sequence and phylogenetic analysis was performed. Genomic clusters were determined and integrated with epidemiological data to provide additional information. RESULTS: All 231 COVID-19 cases notified in Tasmania during the study period and 266 SARS-CoV-2-positive samples, representing 217/231 (94%) notified cases, were included; 184/217 (84%) were clustered, 21/217 (10%) were unique and 12/217 (6%) could not be sequenced. Genomics confirmed the presence of seven clusters already identified through epidemiological links, clarified transmission networks in which the epidemiology had been unclear and identified one cluster that had not previously been recognized. DISCUSSION: Genomic analysis provided useful additional information on COVID-19 in Tasmania, including evidence of a large health-care-associated outbreak linked to an overseas cruise, the probable source of infection in cases with no previously identified epidemiological link and confirmation that there was no identified community transmission from other imported cases. Genomic insights are an important component of the response to COVID-19, and continuing genomic surveillance is warranted.


Subject(s)
COVID-19 , Australia , COVID-19/epidemiology , Genomics , Humans , Phylogeny , Policy , Public Health , SARS-CoV-2/genetics , Tasmania/epidemiology
7.
2021.
Preprint in English | Other preprints | ID: ppcovidwho-296290

ABSTRACT

Background COVID-19 has resulted in many infections in healthcare workers (HCWs) globally. We performed state-wide SARS-CoV-2 genomic epidemiological investigations to identify HCW transmission dynamics and provide recommendations to optimise healthcare system preparedness for future outbreaks. Methods Genome sequencing was attempted on all COVID-19 cases in Victoria, Australia. We combined genomic and epidemiologic data to investigate the source of HCW infections across multiple healthcare facilities (HCFs) in the state. Phylogenetic analysis and fine-scale hierarchical clustering were performed for the entire Victorian dataset including community and healthcare cases. Facilities provided standardised epidemiological data and putative transmission links. Findings Between March and October 2020, approximately 1,240 HCW COVID-19 infection cases were identified;765 are included here. Genomic sequencing was successful for 612 (80%) cases. Thirty-six investigations were undertaken across 12 HCFs. Genomic analysis revealed that multiple introductions of COVID-19 into facilities (31/36) were more common than single introductions (5/36). Major contributors to HCW acquisitions included mobility of staff and patients between wards and facilities, and characteristics and behaviours of individual patients including super-spreading events. Key limitations at the HCF level were identified. Interpretation Genomic epidemiological analyses enhanced understanding of HCW infections, revealing unsuspected clusters and transmission networks. Combined analysis of all HCWs and patients in a HCF should be conducted, supported by high rates of sequencing coverage for all cases in the population. Established systems for integrated genomic epidemiological investigations in healthcare settings will improve HCW safety in future pandemics. Funding The Victorian Government, the National Health and Medical Research Council Australia, and the Medical Research Future Fund.

8.
Clin Infect Dis ; 73(7): e1881-e1884, 2021 10 05.
Article in English | MEDLINE | ID: covidwho-1455263

ABSTRACT

Healthcare workers are at increased risk of occupational transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We report 2 instances of healthcare workers contracting SARS-CoV-2 despite no known breach of personal protective equipment. Additional specific equipment cleaning was initiated. Viral genomic sequencing supported this transmission hypothesis and our subsequent response.


Subject(s)
COVID-19 , Genomics , Humans , Infection Control , Personal Protective Equipment , SARS-CoV-2
9.
Lancet Public Health ; 6(8): e547-e556, 2021 08.
Article in English | MEDLINE | ID: covidwho-1433979

ABSTRACT

BACKGROUND: A cornerstone of Australia's ability to control COVID-19 has been effective border control with an extensive supervised quarantine programme. However, a rapid recrudescence of COVID-19 was observed in the state of Victoria in June, 2020. We aim to describe the genomic findings that located the source of this second wave and show the role of genomic epidemiology in the successful elimination of COVID-19 for a second time in Australia. METHODS: In this observational, genomic epidemiological study, we did genomic sequencing of all laboratory-confirmed cases of COVID-19 diagnosed in Victoria, Australia between Jan 25, 2020, and Jan 31, 2021. We did phylogenetic analyses, genomic cluster discovery, and integrated results with epidemiological data (detailed information on demographics, risk factors, and exposure) collected via interview by the Victorian Government Department of Health. Genomic transmission networks were used to group multiple genomic clusters when epidemiological and genomic data suggested they arose from a single importation event and diversified within Victoria. To identify transmission of emergent lineages between Victoria and other states or territories in Australia, all publicly available SARS-CoV-2 sequences uploaded before Feb 11, 2021, were obtained from the national sequence sharing programme AusTrakka, and epidemiological data were obtained from the submitting laboratories. We did phylodynamic analyses to estimate the growth rate, doubling time, and number of days from the first local infection to the collection of the first sequenced genome for the dominant local cluster, and compared our growth estimates to previously published estimates from a similar growth phase of lineage B.1.1.7 (also known as the Alpha variant) in the UK. FINDINGS: Between Jan 25, 2020, and Jan 31, 2021, there were 20 451 laboratory-confirmed cases of COVID-19 in Victoria, Australia, of which 15 431 were submitted for sequencing, and 11 711 met all quality control metrics and were included in our analysis. We identified 595 genomic clusters, with a median of five cases per cluster (IQR 2-11). Overall, samples from 11 503 (98·2%) of 11 711 cases clustered with another sample in Victoria, either within a genomic cluster or transmission network. Genomic analysis revealed that 10 426 cases, including 10 416 (98·4%) of 10 584 locally acquired cases, diagnosed during the second wave (between June and October, 2020) were derived from a single incursion from hotel quarantine, with the outbreak lineage (transmission network G, lineage D.2) rapidly detected in other Australian states and territories. Phylodynamic analyses indicated that the epidemic growth rate of the outbreak lineage in Victoria during the initial growth phase (samples collected between June 4 and July 9, 2020; 47·4 putative transmission events, per branch, per year [1/years; 95% credible interval 26·0-85·0]), was similar to that of other reported variants, such as B.1.1.7 in the UK (mean approximately 71·5 1/years). Strict interventions were implemented, and the outbreak lineage has not been detected in Australia since Oct 29, 2020. Subsequent cases represented independent international or interstate introductions, with limited local spread. INTERPRETATION: Our study highlights how rapid escalation of clonal outbreaks can occur from a single incursion. However, strict quarantine measures and decisive public health responses to emergent cases are effective, even with high epidemic growth rates. Real-time genomic surveillance can alter the way in which public health agencies view and respond to COVID-19 outbreaks. FUNDING: The Victorian Government, the National Health and Medical Research Council Australia, and the Medical Research Future Fund.


Subject(s)
COVID-19/prevention & control , SARS-CoV-2/genetics , COVID-19/epidemiology , Epidemiologic Studies , Genomics , Humans , SARS-CoV-2/isolation & purification , Victoria/epidemiology
10.
Open Forum Infect Dis ; 8(9): ofab359, 2021 Sep.
Article in English | MEDLINE | ID: covidwho-1405048

ABSTRACT

We describe severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-specific immune responses in a patient with lymphoma and recent programmed death 1 (PD-1) inhibitor therapy with late onset of severe coronavirus disease 2019 disease and prolonged SARS-CoV-2 replication, in comparison to age-matched and immunocompromised controls. High levels of HLA-DR+/CD38+ activation, interleukin 6, and interleukin 18 in the absence of B cells and PD-1 expression was observed. SARS-CoV-2-specific antibody responses were absent and SARS-CoV-2-specific T cells were minimally detected. This case highlights challenges in managing immunocompromised hosts who may fail to mount effective virus-specific immune responses.

11.
ACS Biomater Sci Eng ; 7(9): 4669-4676, 2021 09 13.
Article in English | MEDLINE | ID: covidwho-1373347

ABSTRACT

The COVID-19 pandemic has exposed the dependence of diagnostic laboratories on a handful of large corporations with market monopolies on the worldwide supply of reagents, consumables, and hardware for molecular diagnostics. Global shortages of key consumables for RT-qPCR detection of SARS-CoV-2 RNA have impaired the ability to run essential, routine diagnostic services. Here, we describe a workflow for rapid detection of SARS-CoV-2 RNA in upper respiratory samples including nasal swabs and saliva, utilizing low-cost equipment and readily accessible reagents. Using repurposed Creality3D Ender-3 three-dimensional (3D) printers, we built a semiautomated paramagnetic bead RNA extraction platform. The hardware for the system was built for $300 USD, and the material cost per reaction was $1 USD. Named the Ender VX500, instrument performance when paired with RT-qPCR for SARS-CoV-2 detection in nasal and saliva specimens was two virus copies per microliter. There was a high-performance agreement (assessed using 458 COVID-19 nasal swab specimens) with the Aptima SARS-CoV-2 assay run on the Hologic Panther, a commercial automated RNA extraction and detection platform. Inter- and intrainstrument precision was excellent (coefficients of variation (CoV) of 1.10 and 0.66-1.32%, respectively) across four instruments. The platform is scalable with throughput ranging from 23 specimens on a single instrument run by one user in 50 min to 364 specimens on four instruments run by four users in 190 min. Step-by-step instructions and protocols for building and running the Ender VX500 have been made available without restriction.


Subject(s)
COVID-19 , Humans , Pandemics , Pathology, Molecular , RNA, Viral/genetics , SARS-CoV-2
12.
Wellcome Open Res ; 6: 121, 2021.
Article in English | MEDLINE | ID: covidwho-1259748

ABSTRACT

Late in 2020, two genetically-distinct clusters of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) with mutations of biological concern were reported, one in the United Kingdom and one in South Africa. Using a combination of data from routine surveillance, genomic sequencing and international travel we track the international dispersal of lineages B.1.1.7 and B.1.351 (variant 501Y-V2). We account for potential biases in genomic surveillance efforts by including passenger volumes from location of where the lineage was first reported, London and South Africa respectively. Using the software tool grinch (global report investigating novel coronavirus haplotypes), we track the international spread of lineages of concern with automated daily reports, Further, we have built a custom tracking website (cov-lineages.org/global_report.html) which hosts this daily report and will continue to include novel SARS-CoV-2 lineages of concern as they are detected.

14.
Nat Commun ; 11(1): 4376, 2020 09 01.
Article in English | MEDLINE | ID: covidwho-740037

ABSTRACT

Genomic sequencing has significant potential to inform public health management for SARS-CoV-2. Here we report high-throughput genomics for SARS-CoV-2, sequencing 80% of cases in Victoria, Australia (population 6.24 million) between 6 January and 14 April 2020 (total 1,333 COVID-19 cases). We integrate epidemiological, genomic and phylodynamic data to identify clusters and impact of interventions. The global diversity of SARS-CoV-2 is represented, consistent with multiple importations. Seventy-six distinct genomic clusters were identified, including large clusters associated with social venues, healthcare and cruise ships. Sequencing sequential samples from 98 patients reveals minimal intra-patient SARS-CoV-2 genomic diversity. Phylodynamic modelling indicates a significant reduction in the effective viral reproductive number (Re) from 1.63 to 0.48 after implementing travel restrictions and physical distancing. Our data provide a concrete framework for the use of SARS-CoV-2 genomics in public health responses, including its use to rapidly identify SARS-CoV-2 transmission chains, increasingly important as social restrictions ease globally.


Subject(s)
Betacoronavirus/genetics , Coronavirus Infections/epidemiology , Coronavirus Infections/virology , Pneumonia, Viral/epidemiology , Pneumonia, Viral/virology , Adult , Australia/epidemiology , Betacoronavirus/isolation & purification , COVID-19 , Coronavirus Infections/transmission , Female , Genome, Viral , Genomics/methods , Health Personnel , Humans , Male , Middle Aged , Molecular Epidemiology , Pandemics , Phylogeny , Pneumonia, Viral/transmission , Public Health , Retrospective Studies , SARS-CoV-2 , Travel
15.
J Med Microbiol ; 69(9): 1169-1178, 2020 Sep.
Article in English | MEDLINE | ID: covidwho-696076

ABSTRACT

Introduction. The SARS-CoV-2 pandemic of 2020 has resulted in unparalleled requirements for RNA extraction kits and enzymes required for virus detection, leading to global shortages. This has necessitated the exploration of alternative diagnostic options to alleviate supply chain issues.Aim. To establish and validate a reverse transcription loop-mediated isothermal amplification (RT- LAMP) assay for the detection of SARS-CoV-2 from nasopharyngeal swabs.Methodology. We used a commercial RT-LAMP mastermix from OptiGene in combination with a primer set designed to detect the CDC N1 region of the SARS-CoV-2 nucleocapsid (N) gene. A single-tube, single-step fluorescence assay was implemented whereby 1 µl of universal transport medium (UTM) directly from a nasopharyngeal swab could be used as template, bypassing the requirement for RNA purification. Amplification and detection could be conducted in any thermocycler capable of holding 65 °C for 30 min and measure fluorescence in the FAM channel at 1 min intervals.Results. Assay evaluation by assessment of 157 clinical specimens previously screened by E-gene RT-qPCR revealed assay sensitivity and specificity of 87 and 100%, respectively. Results were fast, with an average time-to-positive (Tp) for 93 clinical samples of 14 min (sd±7 min). Using dilutions of SARS-CoV-2 virus spiked into UTM, we also evaluated assay performance against FDA guidelines for implementation of emergency-use diagnostics and established a limit-of-detection of 54 Tissue Culture Infectious Dose 50 per ml (TCID50 ml-1), with satisfactory assay sensitivity and specificity. A comparison of 20 clinical specimens between four laboratories showed excellent interlaboratory concordance; performing equally well on three different, commonly used thermocyclers, pointing to the robustness of the assay.Conclusion. With a simplified workflow, The N1 gene Single Tube Optigene LAMP assay (N1-STOP-LAMP) is a powerful, scalable option for specific and rapid detection of SARS-CoV-2 and an additional resource in the diagnostic armamentarium against COVID-19.


Subject(s)
Coronavirus Infections/diagnosis , Nucleic Acid Amplification Techniques/methods , Pneumonia, Viral/diagnosis , Betacoronavirus , COVID-19 , COVID-19 Testing , COVID-19 Vaccines , Clinical Laboratory Techniques , Humans , Molecular Diagnostic Techniques/methods , Nasopharynx/virology , Pandemics , RNA, Viral , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Reverse Transcription , SARS-CoV-2 , Sensitivity and Specificity
16.
Med J Aust ; 212(10): 459-462, 2020 06.
Article in English | MEDLINE | ID: covidwho-39583

ABSTRACT

OBJECTIVES: To describe the first isolation and sequencing of SARS-CoV-2 in Australia and rapid sharing of the isolate. SETTING: SARS-CoV-2 was isolated from a 58-year-old man from Wuhan, China who arrived in Melbourne on 19 January 2020 and was admitted to the Monash Medical Centre, Melbourne from the emergency department on 24 January 2020 with fever, cough, and progressive dyspnoea. MAJOR OUTCOMES: Clinical course and laboratory features of the first reported case of COVID-19 (the illness caused by SARS-CoV-2) in Australia; isolation, whole genome sequencing, imaging, and rapid sharing of virus from the patient. RESULTS: A nasopharyngeal swab and sputum collected when the patient presented to hospital were each positive for SARS-CoV-2 (reverse transcription polymerase chain reaction). Inoculation of Vero/hSLAM cells with material from the nasopharyngeal swab led to the isolation of SARS-CoV-2 virus in culture. Electron microscopy of the supernatant confirmed the presence of virus particles with morphology characteristic of viruses of the family Coronaviridae. Whole genome sequencing of the viral isolate and phylogenetic analysis indicated the isolate exhibited greater than 99.99% sequence identity with other publicly available SARS-CoV-2 genomes. Within 24 hours of isolation, the first Australian SARS-CoV-2 isolate was shared with local and overseas reference laboratories and major North American and European culture collections. CONCLUSIONS: The ability to rapidly identify, propagate, and internationally share our SARS-CoV-2 isolate is an important step in collaborative scientific efforts to deal effectively with this international public health emergency by developing better diagnostic procedures, vaccine candidates, and antiviral agents.


Subject(s)
Betacoronavirus/genetics , Coronavirus Infections/genetics , Information Dissemination/methods , Patient Isolation/methods , Pneumonia, Viral/genetics , Australia , COVID-19 , Coronavirus Infections/diagnosis , Humans , Male , Middle Aged , Pandemics , Pneumonia, Viral/diagnosis , SARS-CoV-2 , Whole Genome Sequencing
SELECTION OF CITATIONS
SEARCH DETAIL