ABSTRACT
Antibody responses to SARS-CoV-2 vaccination are reduced in solid organ transplant recipients (SOTRs). We report that increased levels of pre-existing antibodies to seasonal coronaviruses are associated with decreased antibody response to SARS-CoV-2 vaccination in SOTRs, supporting that antigenic imprinting modulates vaccine responses in this immunosuppressed population.
ABSTRACT
BACKGROUND: Postacute sequelae of SARS-CoV-2 infection (PASC) is an increasingly recognized phenomenon and manifested by long-lasting cognitive, mental, and physical symptoms beyond the acute infection period. We aimed to estimate the frequency of PASC symptoms in solid organ transplant (SOT) recipients and compared their frequency between those with SARS-CoV-2 infection requiring hospitalization and those who did not require hospitalization. METHODS: A survey consisting of 7 standardized questionnaires was administered to 111 SOT recipients with history of SARS-CoV-2 infection diagnosed >4 wk before survey administration. RESULTS: Median (interquartile range) time from SARS-CoV-2 diagnosis was 167 d (138-221). Hospitalization for SARS-CoV-2 infection was reported in 33 (30%) participants. Symptoms after the COVID episode were perceived as following: significant trauma (53%), cognitive decline (50%), fatigue (41%), depression (36%), breathing problems (35%), anxiety (23%), dysgeusia (22%), dysosmia (21%), and pain (19%). Hospitalized patients had poorer median scores in cognition (Quick Dementia Rating System survey score: 2.0 versus 0.5, P = 0.02), quality of life (Health-related Quality of Life survey: 2.0 versus 1.0, P = 0.015), physical health (Global physical health scale: 10.0 versus 11.0, P = 0.005), respiratory status (Breathlessness, Cough and Sputum Scale: 1.0 versus 0.0, P = 0.035), and pain (Pain score: 3 versus 0 out of 10, P = 0.003). Among patients with infection >6 mo prior, some symptoms were still present as following: abnormal breathing (42%), cough (40%), dysosmia (29%), and dysgeusia (34%). CONCLUSIONS: SOT recipients reported a high frequency of PASC symptoms. Multidisciplinary approach is needed to care for these patients beyond the acute phase.
ABSTRACT
BACKGROUND: Tixagevimab and Cilgavimab (T + C) is authorized for pre-exposure prophylaxis (PrEP) against Coronavirus Disease 2019 (COVID-19) in solid organ transplant recipients (SOTRs), yet patient-reported outcomes after injection are not well described. Furthermore, changes in risk tolerance after T + C PrEP have not been reported, of interest given uncertain activity against emerging Omicron sublineages. METHODS: Within a national prospective observational study, SOTRs who reported receiving T + C were surveyed for 3 months to ascertain: (1) local and systemic reactogenicity, (2) severe adverse events with focus on cardiovascular and alloimmune complications, and (3) breakthrough COVID-19, contextualized through (4) changes in attitudes regarding COVID-19 risk and behaviors. RESULTS: At 7 days postinjection, the most common reactions were mild fatigue (29%), headache (20%), and pain at injection sites (18%). Severe adverse events were uncommon; over 3 months of follow-up, 4/392 (1%) reported acute rejection and one (.3%) reported a myocardial infarction. Breakthrough COVID-19 occurred in 9%, 16-129 days after receiving full dose (300/300 mg) T + C, including two non-ICU hospitalizations. Most surveyed SOTRs (65%) felt T + C PrEP was likely to reduce their COVID-19 risk, and 70% reported increased willingness to engage in social activities such as visiting friends. However, few felt safe to return to in-person work (20%) or cease public mask-wearing (15%). CONCLUSIONS: In this prospective study of patient-reported outcomes, T + C was well tolerated with few serious events. Several COVID-19 breakthroughs were reported, notable as most SOTRs reported changes in risk tolerance after T + C. These results aid counseling of SOTRs regarding real-world safety and effectiveness of T + C.
ABSTRACT
BACKGROUND: Few reports have focused on newer coronavirus disease 2019 (COVID-19) therapies (remdesivir, dexamethasone, and convalescent plasma) in solid organ transplant recipients; concerns had been raised regarding possible adverse impact on allograft function or secondary infections. METHODS: We studied 77 solid organ transplant inpatients with COVID-19 during 2 therapeutic eras (Era 1: March-May 2020, 21 patients; and Era 2: June-November 2020, 56 patients) and 52 solid organ transplant outpatients. RESULTS: In Era 1, no patients received remdesivir or dexamethasone, and 4 of 21 (19.4%) received convalescent plasma, whereas in Era 2, remdesivir (24/56, 42.9%), dexamethasone (24/56, 42.9%), and convalescent plasma (40/56, 71.4%) were commonly used. Mortality was low across both eras, 4 of 77 (5.6%), and rejection occurred in only 2 of 77 (2.8%) inpatients; infections were similar in hypoxemic patients with or without dexamethasone. Preexisting graft dysfunction was associated with greater need for hospitalization, higher severity score, and lower survival. Acute kidney injury was present in 37.3% of inpatients; renal function improved more rapidly in patients who received remdesivir and convalescent plasma. Post-COVID-19 renal and liver function were comparable between eras, out to 90 d. CONCLUSIONS: Newer COVID-19 therapies did not appear to have a deleterious effect on allograft function, and infectious complications were comparable.
ABSTRACT
BACKGROUND: Postacute sequelae of SARS-CoV-2 infection (PASC) is an increasingly recognized phenomenon and manifested by long-lasting cognitive, mental, and physical symptoms beyond the acute infection period. We aimed to estimate the frequency of PASC symptoms in solid organ transplant (SOT) recipients and compared their frequency between those with SARS-CoV-2 infection requiring hospitalization and those who did not require hospitalization. METHODS: A survey consisting of 7 standardized questionnaires was administered to 111 SOT recipients with history of SARS-CoV-2 infection diagnosed >4 wk before survey administration. RESULTS: Median (interquartile range) time from SARS-CoV-2 diagnosis was 167 d (138-221). Hospitalization for SARS-CoV-2 infection was reported in 33 (30%) participants. Symptoms after the COVID episode were perceived as following: significant trauma (53%), cognitive decline (50%), fatigue (41%), depression (36%), breathing problems (35%), anxiety (23%), dysgeusia (22%), dysosmia (21%), and pain (19%). Hospitalized patients had poorer median scores in cognition (Quick Dementia Rating System survey score: 2.0 versus 0.5, P = 0.02), quality of life (Health-related Quality of Life survey: 2.0 versus 1.0, P = 0.015), physical health (Global physical health scale: 10.0 versus 11.0, P = 0.005), respiratory status (Breathlessness, Cough and Sputum Scale: 1.0 versus 0.0, P = 0.035), and pain (Pain score: 3 versus 0 out of 10, P = 0.003). Among patients with infection >6 mo prior, some symptoms were still present as following: abnormal breathing (42%), cough (40%), dysosmia (29%), and dysgeusia (34%). CONCLUSIONS: SOT recipients reported a high frequency of PASC symptoms. Multidisciplinary approach is needed to care for these patients beyond the acute phase.
ABSTRACT
Antibody responses to SARS-CoV-2 vaccination are reduced in solid organ transplant recipients (SOTRs). We report that increased levels of pre-existing antibodies to seasonal coronaviruses are associated with decreased antibody response to SARS-CoV-2 vaccination in SOTRs, supporting that antigenic imprinting modulates vaccine responses in this immunosuppressed population.
ABSTRACT
BACKGROUND: Solid organ transplant recipients (SOTRs) are less likely to mount an antibody response to SARS-CoV-2 mRNA vaccines. Understanding risk factors for impaired vaccine response can guide strategies for antibody testing and additional vaccine dose recommendations. METHODS: Using a nationwide observational cohort of 1031 SOTRs, we created a machine learning model to explore, identify, rank, and quantify the association of 19 clinical factors with antibody responses to 2 doses of SARS-CoV-2 mRNA vaccines. External validation of the model was performed using a cohort of 512 SOTRs at Houston Methodist Hospital. RESULTS: Mycophenolate mofetil use, a shorter time since transplant, and older age were the strongest predictors of a negative antibody response, collectively contributing to 76% of the model's prediction performance. Other clinical factors, including transplanted organ, vaccine type (mRNA-1273 versus BNT162b2), sex, race, and other immunosuppressants, showed comparatively weaker associations with an antibody response. This model showed moderate prediction performance, with an area under the receiver operating characteristic curve of 0.79 in our cohort and 0.67 in the external validation cohort. An online calculator based on our prediction model is available at http://transplantmodels.com/covidvaccine/ . CONCLUSIONS: Our machine learning model helps understand which transplant patients need closer follow-up and additional doses of vaccine to achieve protective immunity. The online calculator based on this model can be incorporated into transplant providers' practice to facilitate patient-centric, precision risk stratification and inform vaccination strategies among SOTRs.
Subject(s)
COVID-19 Vaccines , COVID-19 , Transplant Recipients , Antibodies, Viral , Antibody Formation , BNT162 Vaccine , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , Humans , Immunosuppressive Agents/adverse effects , Machine Learning , Mycophenolic Acid , SARS-CoV-2 , Vaccines , Vaccines, Synthetic , mRNA VaccinesSubject(s)
COVID-19 , Vaccines , 2019-nCoV Vaccine mRNA-1273 , Antibodies, Viral , Antibody Formation , BNT162 Vaccine , COVID-19/prevention & control , Humans , SARS-CoV-2ABSTRACT
INTRODUCTION: The response to SARS-CoV-2 vaccination of patients with inflammatory bowel disease (IBD) on immune-modifying therapies requires further investigation because previous studies indicate that patients on immune therapy might have decreased antibody concentrations. METHODS: We present the antireceptor binding domain antibody response over a period of 3 months in 217 patients with IBD who completed standard 2-dose SARS-CoV-2 mRNA vaccine series. RESULTS: Almost all (98.6%) IBD vaccine recipients had a positive antireceptor binding domain antibody response at least 3 months after vaccination. Decreased antibody titers at 3 months were seen in a subset of patients on antitumor necrosis factor-alpha. Approximately 10% of the participants with high-titer antibodies at 1 month had a decrease to low-positive titers at 3 months, which was mostly observed in those on combination therapy and antitumor necrosis factor-alpha monotherapy. DISCUSSION: Larger longitudinal studies are required to define the response in IBD population and its clinical impact.