Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Plasmonics ; 17(4): 1489-1500, 2022.
Article in English | MEDLINE | ID: covidwho-1803054

ABSTRACT

The coronavirus (COVID-19) pandemic has put the entire world at risk and caused an economic downturn in most countries. This work provided theoretical insight into a novel fiber optic-based plasmonic biosensor that can be used for sensitive detection of SARS-CoV-2. The aim was always to achieve reliable, sensitive, and reproducible detection. The proposed configuration is based on Ag-Au alloy nanoparticle films covered with a layer of graphene which promotes the molecular adsorption and a thiol-tethered DNA layer as a ligand. Here, the combination of two recent approaches in a single configuration is very promising and can only lead to considerable improvement. We have theoretically analyzed the sensor performance in terms of sensitivity and resolution. To highlight the importance of the new configuration, a comparison was made with two other sensors. One is based on gold nanoparticles incorporated into a host medium; the other is composed of a bimetallic Ag-Au layer in the massive state. The numerical results obtained have been validated and show that the proposed configuration offers better sensitivity (7100 nm\RIU) and good resolution (figure of merit; FOM = 38.88 RIU - 1 and signal-to-noise ratio; SNR = 0.388). In addition, a parametric study was performed such as the graphene layers' number and the size of the nanoparticles.

2.
Microfluid Nanofluidics ; 25(10): 86, 2021.
Article in English | MEDLINE | ID: covidwho-1415053

ABSTRACT

The rapid spread and quick transmission of the new ongoing pandemic coronavirus disease 2019 (COVID-19) has urged the scientific community to looking for strong technology to understand its pathogenicity, transmission, and infectivity, which helps in the development of effective vaccines and therapies. Furthermore, there was a great effort to improve the performance of biosensors so that they can detect the pathogenic virus quickly, in reliable and precise way. In this context, we propose a numerical simulation to highlight the important role of the design parameters that can significantly improve the performance of the biosensor, in particular the sensitivity as well as the detection limit. Applied alternating current electrothermal (ACET) force can generate swirling patterns in the fluid within the microfluidic channel, which improve the transport of target molecule toward the reaction surface and, thus, enhance the response time of the biosensor. In this work, the ACET effect on the SARS-CoV-2 S protein binding reaction kinetics and on the detection time of the biosensor was analyzed. Appropriate choice of electrodes location on the walls of the microchannel and suitable values of the dissociation and association rates of the binding reaction, while maintaining the same affinity, with and without ACET effect, are also, discussed to enhance the total performance of the biosensor and reduce its response time. The two-dimensional equations system is solved by the finite element approach. The best performance of the biosensor is obtained in the case where the response time decreased by 61% with AC applying voltage.

SELECTION OF CITATIONS
SEARCH DETAIL