Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Nutrients ; 14(23):5068, 2022.
Article in English | MDPI | ID: covidwho-2143416

ABSTRACT

Olfactory and gustatory dysfunction are recognized as common symptoms in patients with COVID-19, with a prevalence ranging, respectively, between 41-61% and 38.2-49%. This review focused on relating the variations in dietary habits with the reduction/loss of smell and/or taste in patients who contracted the COVID-19 infection. Primarily, we reviewed the main pathological mechanisms involved in COVID 19-induced anosmia/dysosmia and ageusia/dysgeusia. Then, we explored and summarized the behavioural changes in food intake and body weight during the COVID-19 pandemic in relation to sensory impairment and the underlying mechanisms. Most studies on this topic argue that the altered chemosensory perception (taste and smell) mainly induces reduced appetite, leading to a faster fullness sensation during the consumption of a meal and, therefore, to a decrease in body weight. On the other hand, a reduced perception of the food's sensory properties may trigger compensatory responses that lead some individuals to increase food intake with a different effect on body weight. Regarding body weight, most studies evaluated malnutrition in patients hospitalized for COVID-19;more studies are warranted to investigate nutritional status specifically in non-hospitalized patients with olfactory and gustatory dysfunctions caused by COVID-19 infection.

2.
Front Immunol ; 13: 798813, 2022.
Article in English | MEDLINE | ID: covidwho-1902970

ABSTRACT

A successful vaccination would represent the most efficient means to control the pandemic of Coronavirus Disease-19 (COVID-19) that led to millions of deaths worldwide. Novel mRNA-based vaccines confer protective immunity against SARS-CoV-2, but whether immunity is immediately effective and how long it will remain in recipients are uncertain. We sought to assess the effectiveness of a two-dose regimen since the boosts are often delayed concerning the recommended intervals. Methods: A longitudinal cohort of healthcare workers (HCW, N = 46; 30.4% men; 69.6% women; mean age 36.05 ± 2.2 years) with no SARS-CoV-2 infection as documented by negative polymerase chain reaction was immunophenotyped in PBMC once a week for 4 weeks from the prime immunization (Pfizer mRNA BNT162b2) and had received 2 doses, to study the kinetic response. Results: We identified three risk groups to develop SARS-CoV-2 infection IgG+-based (late responders, R-; early responders, R+; pauci responders, PR). In all receipts, amplification of B cells and NK cells, including IL4-producing B cells and IL4-producing CD8+ T cells, is early stimulated by the vaccine. After the boost, we observed a growing increase of NK cells but a resistance of T cells, IFNγ-producing CD4+T cells, and IFNγ-producing NK cells. Also, hematologic parameters decline until the boost. The positive association of IFNγ-producing NK with IFNγ-producing CD4+T cells by the multiple mixed-effect model, adjusted for confounders (p = 0.036) as well as the correlation matrix (r = 0.6, p < 0.01), suggests a relationship between these two subsets of lymphocytes. Conclusions: These findings introduce several concerns about policy delay in vaccination: based on immunological protection, B cells and the persistent increase of NK cells during 2 doses of the mRNA-based vaccine could provide further immune protection against the virus, while CD8+ T cells increased slightly only in the R+ and PR groups.


Subject(s)
/immunology , Immunization , Interferon-gamma/immunology , Killer Cells, Natural/immunology , SARS-CoV-2/immunology , T-Lymphocytes/immunology , Adult , B-Lymphocytes/immunology , COVID-19/immunology , COVID-19/prevention & control , Female , Humans , Interleukin-4/immunology , Leukocytes, Mononuclear/immunology , Lymphocyte Subsets/immunology , Male , Th1-Th2 Balance
3.
Nutrition ; 79-80: 110996, 2020.
Article in English | MEDLINE | ID: covidwho-811888

ABSTRACT

In a few months, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has become the main health problem worldwide. Epidemiologic studies revealed that populations have different vulnerabilities to SARS-CoV-2. Severe outcomes of the coronavirus disease 2019 (COVID-19) with an increased risk of death are observed in patients with metabolic syndrome, as well as diabetic and heart conditions (frail population). Excessive proinflammatory cytokine storm could be the main cause of increased vulnerability in this frail population. In patients with diabetes and/or heart disease, a low inflammatory state is often associated with gut dysbiosis. The increase amount of microbial metabolites (i.e., trimethylamine N-oxide and lipopolysaccharide), which generate an inflammatory microenvironment, is probably associated with an improved risk of severe illness from COVID-19. Nutritional interventions aimed at restoring the gut microbial balance could represent preventive strategies to protect the frail population from COVID-19. This narrative review presents the possible molecular mechanisms by which intestinal dysbiosis that enhances the inflammatory state could promote the spread of SARS-CoV-2 infection. Some nutritional strategies to counteract inflammation in frail patients are also analyzed.


Subject(s)
COVID-19/complications , Cytokines/metabolism , Dysbiosis/complications , Frail Elderly , Frailty , Inflammation/etiology , Intestines/microbiology , Aged , COVID-19/metabolism , COVID-19/microbiology , Humans , Inflammation/metabolism , Inflammation/microbiology , SARS-CoV-2 , Severe Acute Respiratory Syndrome
SELECTION OF CITATIONS
SEARCH DETAIL