Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Thorax ; 2022 Mar 31.
Article in English | MEDLINE | ID: covidwho-1774983

ABSTRACT

BACKGROUND: Ambient air pollution is thought to contribute to increased risk of COVID-19, but the evidence is controversial. OBJECTIVE: To evaluate the associations between short-term variations in outdoor concentrations of ambient air pollution and COVID-19 emergency department (ED) visits. METHODS: We conducted a case-crossover study of 78 255 COVID-19 ED visits in Alberta and Ontario, Canada between 1 March 2020 and 31 March 2021. Daily air pollution data (ie, fine particulate matter with diameter less than 2.5 µm (PM2.5), nitrogen dioxide (NO2) and ozone were assigned to individual case of COVID-19 in 10 km × 10 km grid resolution. Conditional logistic regression was used to estimate associations between air pollution and ED visits for COVID-19. RESULTS: Cumulative ambient exposure over 0-3 days to PM2.5 (OR 1.010; 95% CI 1.004 to 1.015, per 6.2 µg/m3) and NO2 (OR 1.021; 95% CI 1.015 to 1.028, per 7.7 ppb) concentrations were associated with ED visits for COVID-19. We found that the association between PM2.5 and COVID-19 ED visits was stronger among those hospitalised following an ED visit, as a measure of disease severity, (OR 1.023; 95% CI 1.015 to 1.031) compared with those not hospitalised (OR 0.992; 95% CI 0.980 to 1.004) (p value for effect modification=0.04). CONCLUSIONS: We found associations between short-term exposure to ambient air pollutants and COVID-19 ED visits. Exposure to air pollution may also lead to more severe COVID-19 disease.

2.
Environ Res ; : 113134, 2022 Mar 17.
Article in English | MEDLINE | ID: covidwho-1748017

ABSTRACT

Numerous studies have been conducted worldwide to investigate if an association exists between meteorological factors and the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection incidence. Although research studies provide conflicting results, which can be partially explained by different methods used, some clear trends emerge on the role of weather conditions and SARS-CoV-2 infection, especially for temperature and humidity. This study sheds more light on the relationship between meteorological factors and SARS-CoV-2 infection incidence in 23 Italian and 52 Spanish cities. For the purposes of this study, daily air temperature, absolute and relative humidity, wind speed, ultraviolet radiation, and rainfall are considered exposure variables. We conducted a two-stage meta-regression. In the first stage, we estimated the exposure-response association through time series regression analysis at the municipal level. In the second stage, we pooled the association parameters using a meta-analytic model. The study demonstrates an association between meteorological factors and SARS-CoV-2 infection incidence. Specifically, low levels of ambient temperatures and absolute humidity were associated with an increased relative risk. On the other hand, low and high levels of relative humidity and ultraviolet radiation were associated with a decreased relative risk. Concerning wind speed and rainfall, higher values contributed to the reduction of the risk of infection. Overall, our results contribute to a better understanding of how the meteorological factors influence the spread of the SARS-CoV-2 and should be considered in a wider context of existing robust literature that highlight the importance of measures such as social distancing, improved hygiene, face masks and vaccination campaign.

3.
Sci Rep ; 12(1): 726, 2022 01 26.
Article in English | MEDLINE | ID: covidwho-1655612

ABSTRACT

Previous studies have reported a decrease in air pollution levels following the enforcement of lockdown measures during the first wave of the COVID-19 pandemic. However, these investigations were mostly based on simple pre-post comparisons using past years as a reference and did not assess the role of different policy interventions. This study contributes to knowledge by quantifying the association between specific lockdown measures and the decrease in NO2, O3, PM2.5, and PM10 levels across 47 European cities. It also estimated the number of avoided deaths during the period. This paper used new modelled data from the Copernicus Atmosphere Monitoring Service (CAMS) to define business-as-usual and lockdown scenarios of daily air pollution trends. This study applies a spatio-temporal Bayesian non-linear mixed effect model to quantify the changes in pollutant concentrations associated with the stringency indices of individual policy measures. The results indicated non-linear associations with a stronger decrease in NO2 compared to PM2.5 and PM10 concentrations at very strict policy levels. Differences across interventions were also identified, specifically the strong effects of actions linked to school/workplace closure, limitations on gatherings, and stay-at-home requirements. Finally, the observed decrease in pollution potentially resulted in hundreds of avoided deaths across Europe.


Subject(s)
Air Pollution/analysis , Air Pollutants/analysis , Bayes Theorem , COVID-19/epidemiology , COVID-19/virology , Environmental Monitoring , Europe/epidemiology , Humans , Nitrogen Oxides/analysis , Pandemics , Particulate Matter/analysis , Quarantine , SARS-CoV-2/isolation & purification
4.
Int J Epidemiol ; 51(1): 75-84, 2022 02 18.
Article in English | MEDLINE | ID: covidwho-1493814

ABSTRACT

BACKGROUND: Coronavirus disease 2019 (COVID-19) continues to be a major global health burden. This study aims to estimate the all-cause excess mortality occurring in the COVID-19 outbreak in Japan, 2020, by sex and age group. METHODS: Daily time series of mortality for the period January 2015-December 2020 in all 47 prefectures of Japan were obtained from the Ministry of Health, Labour and Welfare, Japan. A two-stage interrupted time-series design was used to calculate excess mortality. In the first stage, we estimated excess mortality by prefecture using quasi-Poisson regression models in combination with distributed lag non-linear models, adjusting for seasonal and long-term variations, weather conditions and influenza activity. In the second stage, we used a random-effects multivariate meta-analysis to synthesize prefecture-specific estimates at the nationwide level. RESULTS: In 2020, we estimated an all-cause excess mortality of -20 982 deaths [95% empirical confidence intervals (eCI): -38 367 to -5472] in Japan, which corresponded to a percentage excess of -1.7% (95% eCI: -3.1 to -0.5) relative to the expected value. Reduced deaths were observed for both sexes and in all age groups except those aged <60 and 70-79 years. CONCLUSIONS: All-cause mortality during the COVID-19 outbreak in Japan in 2020 was decreased compared with a historical baseline. Further evaluation of cause-specific excess mortality is warranted.


Subject(s)
COVID-19 , Disease Outbreaks , Female , Humans , Interrupted Time Series Analysis , Japan/epidemiology , Male , Mortality , SARS-CoV-2
5.
Nat Commun ; 12(1): 5968, 2021 10 13.
Article in English | MEDLINE | ID: covidwho-1467102

ABSTRACT

There is conflicting evidence on the influence of weather on COVID-19 transmission. Our aim is to estimate weather-dependent signatures in the early phase of the pandemic, while controlling for socio-economic factors and non-pharmaceutical interventions. We identify a modest non-linear association between mean temperature and the effective reproduction number (Re) in 409 cities in 26 countries, with a decrease of 0.087 (95% CI: 0.025; 0.148) for a 10 °C increase. Early interventions have a greater effect on Re with a decrease of 0.285 (95% CI 0.223; 0.347) for a 5th - 95th percentile increase in the government response index. The variation in the effective reproduction number explained by government interventions is 6 times greater than for mean temperature. We find little evidence of meteorological conditions having influenced the early stages of local epidemics and conclude that population behaviour and government interventions are more important drivers of transmission.


Subject(s)
COVID-19/transmission , Meteorological Concepts , SARS-CoV-2/pathogenicity , Basic Reproduction Number , COVID-19/epidemiology , Cities , Cross-Sectional Studies , Humans , Meta-Analysis as Topic , Pandemics , Regression Analysis , Seasons , Temperature , Weather
6.
Environ Res ; 196: 110977, 2021 05.
Article in English | MEDLINE | ID: covidwho-1118426

ABSTRACT

BACKGROUND: SARS-CoV-2 caused the COVID-19 pandemic in 2020. The virus is likely to show seasonal dynamics in European climates as other respiratory viruses and coronaviruses do. Analysing the association with meteorological factors might be helpful to anticipate how cases will develop with changing seasons. METHODS: Routinely measured ambient daily mean temperature, absolute humidity, and relative humidity were the explanatory variables of this analysis. Test-positive COVID-19 cases represented the outcome variable. The analysis included 54 English cities. A two-stage meta-regression was conducted. At the first stage, we used a quasi-Poisson generalized linear model including distributed lag non-linear elements. Thereby, we investigate the explanatory variables' non-linear effects as well as the non-linear effects across lags. RESULTS: This study found a non-linear association of COVID-19 cases with temperature. At 11.9°C there was 1.62-times (95%-CI: 1.44; 1.81) the risk of cases compared to the temperature-level with the smallest risk (21.8°C). Absolute humidity exhibited a 1.61-times (95%-CI: 1.41; 1.83) elevated risk at 6.6 g/m3 compared to the centering at 15.1 g/m3. When adjusting for temperature RH shows a 1.41-fold increase in risk of COVID-19 incidence (95%-CI: 1.09; 1.81) at 60.7% in respect to 87.6%. CONCLUSION: The analysis suggests that in England meteorological variables likely influence COVID-19 case development. These results reinforce the importance of non-pharmaceutical interventions (e.g., social distancing and mask use) during all seasons, especially with cold and dry weather conditions.


Subject(s)
COVID-19 , Pandemics , China , Cities , England/epidemiology , Humans , Humidity , Incidence , SARS-CoV-2 , Temperature
7.
Int J Epidemiol ; 49(6): 1909-1917, 2021 01 23.
Article in English | MEDLINE | ID: covidwho-857629

ABSTRACT

BACKGROUND: Italy was the first country outside China to experience the impact of the COVID-19 pandemic, which resulted in a significant health burden. This study presents an analysis of the excess mortality across the 107 Italian provinces, stratified by sex, age group and period of the outbreak. METHODS: The analysis was performed using a two-stage interrupted time-series design using daily mortality data for the period January 2015-May 2020. In the first stage, we performed province-level quasi-Poisson regression models, with smooth functions to define a baseline risk while accounting for trends and weather conditions and to flexibly estimate the variation in excess risk during the outbreak. Estimates were pooled in the second stage using a mixed-effects multivariate meta-analysis. RESULTS: In the period 15 February-15 May 2020, we estimated an excess of 47 490 [95% empirical confidence intervals (eCIs): 43 984 to 50 362] deaths in Italy, corresponding to an increase of 29.5% (95% eCI: 26.8 to 31.9%) from the expected mortality. The analysis indicates a strong geographical pattern, with the majority of excess deaths occurring in northern regions, where few provinces experienced increases up to 800% during the peak in late March. There were differences by sex, age and area both in the overall impact and in its temporal distribution. CONCLUSION: This study offers a detailed picture of excess mortality during the first months of the COVID-19 pandemic in Italy. The strong geographical and temporal patterns can be related to the implementation of lockdown policies and multiple direct and indirect pathways in mortality risk.


Subject(s)
COVID-19/mortality , Disease Outbreaks , Mortality/trends , Pandemics , SARS-CoV-2 , Adult , Aged , Aged, 80 and over , Communicable Disease Control , Female , Humans , Interrupted Time Series Analysis , Italy/epidemiology , Male , Middle Aged
SELECTION OF CITATIONS
SEARCH DETAIL