Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Add filters

Document Type
Year range
Embase; 2022.
Preprint in English | EMBASE | ID: ppcovidwho-334871


The emerging SARS-CoV-2 variants of concern (VOCs) exhibit enhanced transmission and immune escape, reducing the efficacy and effectiveness of the two FDA-approved mRNA vaccines. Here, we explored various strategies to develop novel mRNAs vaccines to achieve safer and wider coverage of VOCs. Firstly, we constructed a cohort of mRNAs that feature a furin cleavage mutation in the spike (S) protein of predominant VOCs, including Alpha (B.1.1.7), Beta (B.1.351), Gamma (P.1) and Delta (B.1.617.2). Not present in the mRNA vaccines currently in use, the mutation abolished the cleavage between the S1 and S2 subunits, potentially enhancing the safety profile of the immunogen. Secondly, we systematically evaluated the induction of neutralizing antibodies (nAb) in vaccinated mice, and discovered that individual VOC mRNAs elicited strong neutralizing activity in a VOC-specific manner. Thirdly, the IgG produced in mice immunized with Beta-Furin and Washington (WA)-Furin mRNAs showed potent cross-reactivity with other VOCs, which was further corroborated by challenging vaccinated mice with the live virus of VOCs. However, neither WA-Furin nor Beta-Furin mRNA elicited strong neutralizing activity against the Omicron variant. Hence, we further developed an Omicron-specific mRNA vaccine that restored protection against the original and the sublineages of Omicron variant. Finally, to broaden the protection spectrum of the new Omicron mRNA vaccine, we tested the concept of bivalent immunogen. Instead of just fusing two RBDs head-to-tail, we for the first time constructed an mRNA-based chimeric immunogen by introducing the RBD of Delta variant into the entire S antigen of Omicron. The resultant chimeric mRNA was capable of inducing potent and broadly acting nAb against Omicron (both BA.1 and BA.2) and Delta, which paves the way to develop new vaccine candidate to target emerging variants in the future.

Preprint in English | EMBASE | ID: ppcovidwho-326884


Boceprevir is an HCV NSP3 inhibitor that has been explored as a repurposed drug for COVID-19. It inhibits the SARS-CoV-2 main protease (MPro) and contains an α-ketoamide warhead, a P1 β-cyclobutylalanyl moiety, a P2 dimethylcyclopropylproline, a P3 tert-butylglycine, and a P4 N-terminal tert-butylcarbamide. By introducing modifications at all four positions, we synthesized 20 boceprevir-based MProinhibitors including PF-07321332 and characterized their MProinhibition potency in test tubes (in vitro) and human host cells (in cellulo). Crystal structures of MProbound with 10 inhibitors and antiviral potency of 4 inhibitors were characterized as well. Replacing the P1 site with a β-(S-2-oxopyrrolidin-3-yl)-alanyl (opal) residue and the warhead with an aldehyde leads to high in vitro potency. The original moieties at P2, P3 and the P4 N-terminal cap positions in boceprevir are better than other tested chemical moieties for high in vitro potency. In crystal structures, all inhibitors form a covalent adduct with the MProactive site cysteine. The P1 opal residue, P2 dimethylcyclopropylproline and P4 N-terminal tert-butylcarbamide make strong hydrophobic interactions with MPro, explaining high in vitro potency of inhibitors that contain these moieties. A unique observation was made with an inhibitor that contains an P4 N-terminal isovaleramide. In its MProcomplex structure, the P4 N-terminal isovaleramide is tucked deep in a small pocket of MProthat originally recognizes a P4 alanine side chain in a substrate. Although all inhibitors show high in vitro potency, they have drastically different in cellulo potency in inhibiting ectopically expressed MProin human 293T cells. All inhibitors including PF-07321332 with a P4 N-terminal carbamide or amide have low in cellulo potency. This trend is reversed when the P4 N-terminal cap is changed to a carbamate. The installation of a P3 O-tert-butyl-threonine iMProves in cellulo potency. Three molecules that contain a P4 N-terminal carbamate were advanced to antiviral tests on three SARSCoV-2 variants. They all have high potency with EC50 values around 1 μM. A control compound with a nitrile warhead and a P4 N-terminal amide has undetectable antiviral potency. Based on all observations, we conclude that a P4 N-terminal carbamate in a boceprevir derivative is key for high antiviral potency against SARS-CoV-2.

Preprint in English | EMBASE | ID: ppcovidwho-326883


As an essential enzyme to SARS-CoV-2, main protease (MPro) is a viable target to develop antivirals for the treatment of COVID-19. By varying chemical compositions at both P2 and P3 sites and the N-terminal protection group, we synthesized a series of MProinhibitors that contain β-(S-2-oxopyrrolidin-3-yl)-alaninal at the P1 site. These inhibitors have a large variation of determined IC50values that range from 4.8 to 650 nM. The determined IC50values reveal that relatively small side chains at both P2 and P3 sites are favorable for achieving high in vitro MProinhibition potency, the P3 site is tolerable toward unnatural amino acids with two alkyl substituents on the α-carbon, and the inhibition potency is sensitive toward the N-terminal protection group. X-ray crystal structures of MProbound with 16 inhibitors were determined. All structures show similar binding patterns of inhibitors at the MProactive site. A covalent interaction between the active site cysteine and a bound inhibitor was observed in all structures. In MPro, large structural variations were observed on residues N142 and Q189. All inhibitors were also characterized on their inhibition of MProin 293T cells, which revealed their in cellulo potency that is drastically different from their in vitro enzyme inhibition potency. Inhibitors that showed high in cellulo potency all contain O-tert-butyl-threonine at the P3 site. Based on the current and a previous study, we conclude that O-tert-butyl-threonine at the P3 site is a key component to achieve high cellular and antiviral potency for peptidyl aldehyde inhibitors of MPro. This finding will be critical to the development of novel antivirals to address the current global emergency of concerning the COVID-19 pandemic.

Preprint in English | MEDLINE | ID: ppcovidwho-326636


Broadly neutralizing antibodies (bnAbs) to coronaviruses (CoVs) are valuable in their own right as prophylactic and therapeutic reagents to treat diverse CoVs and, importantly, as templates for rational pan-CoV vaccine design. We recently described a bnAb, CC40.8, from a coronavirus disease 2019 (COVID-19)-convalescent donor that exhibits broad reactivity with human beta-coronaviruses (beta-CoVs). Here, we showed that CC40.8 targets the conserved S2 stem-helix region of the coronavirus spike fusion machinery. We determined a crystal structure of CC40.8 Fab with a SARS-CoV-2 S2 stem-peptide at 1.6 A resolution and found that the peptide adopted a mainly helical structure. Conserved residues in beta-CoVs interacted with CC40.8 antibody, thereby providing a molecular basis for its broad reactivity. CC40.8 exhibited in vivo protective efficacy against SARS-CoV-2 challenge in two animal models. In both models, CC40.8-treated animals exhibited less weight loss and reduced lung viral titers compared to controls. Furthermore, we noted CC40.8-like bnAbs are relatively rare in human COVID-19 infection and therefore their elicitation may require rational structure-based vaccine design strategies. Overall, our study describes a target on beta-CoV spike proteins for protective antibodies that may facilitate the development of pan-beta-CoV vaccines. SUMMARY: A human mAb isolated from a COVID-19 donor defines a protective cross-neutralizing epitope for pan-beta-CoV vaccine design strategies.