ABSTRACT
In this study, we addressed the alternative medications that have been targeted in the clinical trials (CTs) to be evidenced as an adjuvant treatment against COVID-19. Based on the outcomes from CTs, we found that dietary supplements such as Lactoferrin, and Probiotics (as SivoMixx) can play a role enhancing the immunity thus can be used as prophylactics against COVID-19 infection. Vitamin D was proven as an effective adjuvant treatment against COVID-19, while Vitamin C role is uncertain and needs more investigation. Herbals such as Guduchi Ghan Vati can be used as prophylactic, while Resveratrol can be used to reduce the hospitalization risk of COVID-19 patients. On the contrary, there were no clinical improvements demonstrated when using Cannabidiol. This study is a part of a two-phase research study. In the first phase, we gathered evidence-based information on alternative therapeutics for COVID-19 that are under CT. In the second phase, we plan to build a mobile health application that will provide evidence based alternative therapy information to health consumers.
Subject(s)
COVID-19 Drug Treatment , Complementary Therapies , Ascorbic Acid , Clinical Trials as Topic , Dietary Supplements , Humans , Phytotherapy , Resveratrol/therapeutic use , SARS-CoV-2 , Vitamin D/therapeutic useABSTRACT
The recent advancements in artificial intelligence (AI) and the Internet of Medical Things (IoMT) have opened new horizons for healthcare technology. AI models, however, rely on large data that must be shared with the centralized entity developing the model. Data sharing leads to privacy preservation and legal issues. Federated Learning (FL) enables the training of AI models on distributed data. Hence, a large amount of IoMT data can be put into use without the need for sharing the data. This paper presents the opportunities offered by FL for privacy preservation in IoMT data. With FL, the complicated dynamics and agreements for data-sharing can be avoided. Furthermore, it describes the use cases of FL in facilitating collaborative efforts to develop AI for COVID-19 diagnosis. Since handling data from multiple sites poses its challenges, the paper also highlights the critical challenges associated with FL developments for IoMT data. Addressing these challenges will lead to gaining maximum benefit from data-driven AI technologies in IoMT.
Subject(s)
COVID-19 , Internet of Things , Artificial Intelligence , COVID-19 Testing , Humans , PrivacyABSTRACT
BACKGROUND: Vaccination programs are effective only when a significant percentage of people are vaccinated. Social media usage is arguably one of the factors affecting public attitudes toward vaccines. OBJECTIVE: This study aims to identify if the social media usage factors can predict Arab people's attitudes and behavior toward the COVID-19 vaccines. METHODS: An online survey was conducted in the Arab countries, and 217 Arab nationals participated in this study. Logistic regression was applied to identify what demographics and social media usage factors predict public attitudes and behavior toward the COVID-19 vaccines. RESULTS: Of the 217 participants, 56.2% (n = 122) were willing to get the vaccines, and 41.5% (n = 90) were hesitant. This study shows that none of the social media usage factors were significant enough to predict the actual vaccine acceptance behavior. However, some social media usage factors could predict public attitudes toward the COVID-19 vaccines. For example, compared to infrequent social media users, frequent social media users were 2.85 times more likely to agree that the risk of COVID-19 was being exaggerated (OR = 2.85, 95% CI = 0.86-9.45, p = .046). On the other hand, participants with more trust in vaccine information shared by their contacts were less likely to agree that decision-makers had ensured the safety of vaccines (OR = 0.528, 95% CI = 0.276-1.012, p = .05). CONCLUSION: Information shared on social media may affect public attitudes toward COVID-19 vaccines. Therefore, disseminating correct and validated information about the COVID-19 vaccines on social media is important to increase public trust and counter the impact of incorrect misinformation.
Subject(s)
COVID-19 , Social Media , Vaccines , Arab World , Attitude , COVID-19/prevention & control , COVID-19 Vaccines , HumansABSTRACT
BACKGROUND: Shortly after the emergence of COVID-19, researchers rapidly mobilized to study numerous aspects of the disease such as its evolution, clinical manifestations, effects, treatments, and vaccinations. This led to a rapid increase in the number of COVID-19-related publications. Identifying trends and areas of interest using traditional review methods (eg, scoping and systematic reviews) for such a large domain area is challenging. OBJECTIVE: We aimed to conduct an extensive bibliometric analysis to provide a comprehensive overview of the COVID-19 literature. METHODS: We used the COVID-19 Open Research Dataset (CORD-19) that consists of a large number of research articles related to all coronaviruses. We used a machine learning-based method to analyze the most relevant COVID-19-related articles and extracted the most prominent topics. Specifically, we used a clustering algorithm to group published articles based on the similarity of their abstracts to identify research hotspots and current research directions. We have made our software accessible to the community via GitHub. RESULTS: Of the 196,630 publications retrieved from the database, we included 28,904 in our analysis. The mean number of weekly publications was 990 (SD 789.3). The country that published the highest number of COVID-19-related articles was China (2950/17,270, 17.08%). The highest number of articles were published in bioRxiv. Lei Liu affiliated with the Southern University of Science and Technology in China published the highest number of articles (n=46). Based on titles and abstracts alone, we were able to identify 1515 surveys, 733 systematic reviews, 512 cohort studies, 480 meta-analyses, and 362 randomized control trials. We identified 19 different topics covered among the publications reviewed. The most dominant topic was public health response, followed by clinical care practices during the COVID-19 pandemic, clinical characteristics and risk factors, and epidemic models for its spread. CONCLUSIONS: We provide an overview of the COVID-19 literature and have identified current hotspots and research directions. Our findings can be useful for the research community to help prioritize research needs and recognize leading COVID-19 researchers, institutes, countries, and publishers. Our study shows that an AI-based bibliometric analysis has the potential to rapidly explore a large corpus of academic publications during a public health crisis. We believe that this work can be used to analyze other eHealth-related literature to help clinicians, administrators, and policy makers to obtain a holistic view of the literature and be able to categorize different topics of the existing research for further analyses. It can be further scaled (for instance, in time) to clinical summary documentation. Publishers should avoid noise in the data by developing a way to trace the evolution of individual publications and unique authors.
Subject(s)
Bibliometrics , COVID-19/epidemiology , Machine Learning , COVID-19/virology , Humans , Research Design , SARS-CoV-2/isolation & purificationABSTRACT
BACKGROUND: In December 2019, COVID-19 broke out in Wuhan, China, leading to national and international disruptions in health care, business, education, transportation, and nearly every aspect of our daily lives. Artificial intelligence (AI) has been leveraged amid the COVID-19 pandemic; however, little is known about its use for supporting public health efforts. OBJECTIVE: This scoping review aims to explore how AI technology is being used during the COVID-19 pandemic, as reported in the literature. Thus, it is the first review that describes and summarizes features of the identified AI techniques and data sets used for their development and validation. METHODS: A scoping review was conducted following the guidelines of PRISMA-ScR (Preferred Reporting Items for Systematic Reviews and Meta-Analyses Extension for Scoping Reviews). We searched the most commonly used electronic databases (eg, MEDLINE, EMBASE, and PsycInfo) between April 10 and 12, 2020. These terms were selected based on the target intervention (ie, AI) and the target disease (ie, COVID-19). Two reviewers independently conducted study selection and data extraction. A narrative approach was used to synthesize the extracted data. RESULTS: We considered 82 studies out of the 435 retrieved studies. The most common use of AI was diagnosing COVID-19 cases based on various indicators. AI was also employed in drug and vaccine discovery or repurposing and for assessing their safety. Further, the included studies used AI for forecasting the epidemic development of COVID-19 and predicting its potential hosts and reservoirs. Researchers used AI for patient outcome-related tasks such as assessing the severity of COVID-19, predicting mortality risk, its associated factors, and the length of hospital stay. AI was used for infodemiology to raise awareness to use water, sanitation, and hygiene. The most prominent AI technique used was convolutional neural network, followed by support vector machine. CONCLUSIONS: The included studies showed that AI has the potential to fight against COVID-19. However, many of the proposed methods are not yet clinically accepted. Thus, the most rewarding research will be on methods promising value beyond COVID-19. More efforts are needed for developing standardized reporting protocols or guidelines for studies on AI.
Subject(s)
Artificial Intelligence , COVID-19/epidemiology , COVID-19/therapy , COVID-19/virology , Humans , Pandemics , SARS-CoV-2/isolation & purificationABSTRACT
BACKGROUND: The recent coronavirus disease (COVID-19) pandemic is taking a toll on the world's health care infrastructure as well as the social, economic, and psychological well-being of humanity. Individuals, organizations, and governments are using social media to communicate with each other on a number of issues relating to the COVID-19 pandemic. Not much is known about the topics being shared on social media platforms relating to COVID-19. Analyzing such information can help policy makers and health care organizations assess the needs of their stakeholders and address them appropriately. OBJECTIVE: This study aims to identify the main topics posted by Twitter users related to the COVID-19 pandemic. METHODS: Leveraging a set of tools (Twitter's search application programming interface (API), Tweepy Python library, and PostgreSQL database) and using a set of predefined search terms ("corona," "2019-nCov," and "COVID-19"), we extracted the text and metadata (number of likes and retweets, and user profile information including the number of followers) of public English language tweets from February 2, 2020, to March 15, 2020. We analyzed the collected tweets using word frequencies of single (unigrams) and double words (bigrams). We leveraged latent Dirichlet allocation for topic modeling to identify topics discussed in the tweets. We also performed sentiment analysis and extracted the mean number of retweets, likes, and followers for each topic and calculated the interaction rate per topic. RESULTS: Out of approximately 2.8 million tweets included, 167,073 unique tweets from 160,829 unique users met the inclusion criteria. Our analysis identified 12 topics, which were grouped into four main themes: origin of the virus; its sources; its impact on people, countries, and the economy; and ways of mitigating the risk of infection. The mean sentiment was positive for 10 topics and negative for 2 topics (deaths caused by COVID-19 and increased racism). The mean for tweet topics of account followers ranged from 2722 (increased racism) to 13,413 (economic losses). The highest mean of likes for the tweets was 15.4 (economic loss), while the lowest was 3.94 (travel bans and warnings). CONCLUSIONS: Public health crisis response activities on the ground and online are becoming increasingly simultaneous and intertwined. Social media provides an opportunity to directly communicate health information to the public. Health systems should work on building national and international disease detection and surveillance systems through monitoring social media. There is also a need for a more proactive and agile public health presence on social media to combat the spread of fake news.