Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Front Immunol ; 12: 732756, 2021.
Article in English | MEDLINE | ID: covidwho-1597480


Coronavirus disease 2019 (COVID-19), which started out as an outbreak of pneumonia, has now turned into a pandemic due to its rapid transmission. Besides developing a vaccine, rapid, accurate, and cost-effective diagnosis is essential for monitoring and combating the spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its related variants on time with precision and accuracy. Currently, the gold standard for detection of SARS-CoV-2 is Reverse Transcription Polymerase Chain Reaction (RT-PCR), but it lacks accuracy, is time-consuming and cumbersome, and fails to detect multi-variant forms of the virus. Herein, we have summarized conventional diagnostic methods such as Chest-CT (Computed Tomography), RT-PCR, Loop Mediated Isothermal Amplification (LAMP), Reverse Transcription-LAMP (RT-LAMP), as well new modern diagnostics such as CRISPR-Cas-based assays, Surface Enhanced Raman Spectroscopy (SERS), Lateral Flow Assays (LFA), Graphene-Field Effect Transistor (GraFET), electrochemical sensors, immunosensors, antisense oligonucleotides (ASOs)-based assays, and microarrays for SARS-CoV-2 detection. This review will also provide an insight into an ongoing research and the possibility of developing more economical tools to tackle the COVID-19 pandemic.

COVID-19 Testing/methods , COVID-19/diagnosis , Clinical Laboratory Techniques/methods , Molecular Diagnostic Techniques/methods , SARS-CoV-2/genetics , COVID-19/epidemiology , COVID-19/virology , Humans , Immunoassay/methods , Nucleic Acid Amplification Techniques/methods , Oligonucleotide Probes/genetics , Pandemics , RNA, Viral/genetics , Reproducibility of Results , Reverse Transcriptase Polymerase Chain Reaction/methods , SARS-CoV-2/physiology , Sensitivity and Specificity
Anal Chim Acta ; 1188: 339207, 2021 Dec 15.
Article in English | MEDLINE | ID: covidwho-1487555


Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2, also known as 2019-nCov or COVID-19) outbreak has become a huge public health issue due to its rapid transmission making it a global pandemic. Here, we report fabricated fluorine doped tin oxide (FTO) electrodes/gold nanoparticles (AuNPs) complex coupled with in-house developed SARS-CoV-2 spike S1 antibody (SARS-CoV-2 Ab) to measure the response with Cyclic Voltammetry (CV) and Differential Pulse Voltammetry (DPV). The biophysical characterisation of FTO/AuNPs/SARS-CoV-2Ab was done via UV-Visible spectroscopy, Dynamic Light Scattering (DLS), and Fourier Transform Infrared Spectroscopy (FT-IR). The fabricated FTO/AuNPs/SARS-CoV-2Ab immunosensor was optimised for response time, antibody concentration, temperature, and pH. Under optimum conditions, the FTO/AuNPs/Ab based immunosensor displayed high sensitivity with limit of detection (LOD) up to 0.63 fM in standard buffer and 120 fM in spiked saliva samples for detection of SARS-CoV-2 spike S1 antigen (Ag) with negligible cross reactivity Middle East Respiratory Syndrome (MERS) spike protein. The proposed FTO/AuNPs/SARS-CoV-2Ab based biosensor proved to be stable for up to 4 weeks and can be used as an alternative non-invasive diagnostic tool for the rapid, specific and sensitive detection of SARS-CoV-2 Spike Ag traces in clinical samples.

Biosensing Techniques , COVID-19 , Metal Nanoparticles , Spike Glycoprotein, Coronavirus/analysis , Electrodes , Fluorine , Gold , Humans , Immunoassay , SARS-CoV-2 , Spectroscopy, Fourier Transform Infrared , Tin Compounds