Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
iScience ; : 104328, 2022.
Article in English | ScienceDirect | ID: covidwho-1814598

ABSTRACT

Summary This paper develops a multi-sector and multi-factor structural gravity model that allows an analytical and quantitative decomposition of the emission and output changes into composition and technique effects. We find that the negative production shock of China’s containment policy propagates globally via supply chains, with the carbon-intensive sectors experiencing the greatest carbon emission shocks. We further reveal that China’s current stimulus package in 2021–2025 is consistent with China’s emission intensity-reduction goals for 2025, but further efforts are required to meet China’s carbon emissions-peaking target in 2030 and Cancun 2°C goal. Short-term changes in carbon emissions resulting from lockdowns and initial fiscal stimuli in “economic rescue” period have minor long-term effects, while the transitional direction of future fiscal stimuli exerts more predominant impact on long-term carbon emissions. The efficiency improvement effects are more important than the sectoral structure effects of the fiscal stimulus in achieving greener economic growth.

2.
Appl Energy ; 307: 118205, 2022 Feb 01.
Article in English | MEDLINE | ID: covidwho-1530604

ABSTRACT

The COVID-19 pandemic has created significant challenges for energy transition. Concerns about the overwhelming emphasis on economic recovery at the cost of energy transition progress have been raised worldwide. More voices are calling for "green" recovery scheme, which recovers the economy while not compromising on the environment. However, limited academic attention has been paid to comprehensively investigating the implications of COVID-19 for global energy transition. This study thus provides a comprehensive analysis of the dynamics between energy transition and COVID-19 around the world and proposes a low-carbon energy transition roadmap in the post-pandemic era. Using energy data from the International Energy Agency (IEA), we first summarized and reviewed the progress of energy transition prior to COVID-19. Building on prior progress, we identified the challenges for energy transition during the pandemic from the perspectives of government support, fossil fuel divestment, renewable energy production capacity, global supply chain, and energy poverty. However, the pandemic also generates opportunities for global energy transition. We hence also identified potential opportunities for energy transition presented by the pandemic from the perspectives of price competitiveness, policy implementation efficiency, and renewable energy strengths. We further provided an in-depth discussion on the impact of current worldwide economic recovery stimulus on energy transition. Based on the identified challenges and opportunities, we proposed the post-pandemic energy transition roadmap in terms of broadening green financing instruments, strengthening international cooperation, and enhancing green recovery plans. Our study sheds light on a global low-carbon energy transition framework and has practical implications for green recovery schemes in post-pandemic times.

3.
Earth's Future ; 9(11), 2021.
Article in English | ProQuest Central | ID: covidwho-1527972

ABSTRACT

Energy and emission data are crucial to climate change research and mitigation efforts. The accuracy of energy statistics is essential for mitigation strategies and evaluating the performance of low carbon energy transition efforts. This study provides the most up‐to‐date emission inventories for China and its provinces for 2018 and 2019. We also update the carbon dioxide (CO2) emission inventories of China and 30 provinces since 2012 based on the newly revised energy statistics. The inventories are compiled in a combined accounting approach of scope 1 (Intergovernmental Panel on Climate Change territorial emissions from 17 types of fossil fuel combustion and cement production by 47 socioeconomic sectors) and scope 2 (emissions from purchased electricity and heat consumption). The most recent energy revision led to an increase in reported national CO2 emissions by an average of 0.3% from 2014 to 2017. The results show that data revisions raised China's carbon intensity mitigation baseline (in 2005) by 5.1%–10.8% and thus made it more challenging to fulfill the mitigation pledges. However, the 2020 carbon intensity mitigation target was achieved ahead of schedule in 2018. A preliminary estimate of China's national emissions for 2020 shows that the COVID‐19 pandemic and lockdown was not able to offset China's annual increase in CO2 emissions. These emissions inventories provide an improved evidence base for China's policies toward net‐zero emissions.

4.
Appl Energy ; 300: 117396, 2021 Oct 15.
Article in English | MEDLINE | ID: covidwho-1309148

ABSTRACT

The coronavirus pandemic has severely affected our daily lives, with direct consequences on passenger transport. This in turn has strongly impacted the energy demand of the transport sector and associated CO2 emissions. We analyse near real-time passenger mobility and related emission trends in Europe between 21 January and 21 September 2020. We compiled a dataset of country-, sector- and lockdown- specific values, representing daily activity changes in private, public, and active passenger transport. In the aggregate, surface passenger transport emissions fell by 11.2% corresponding to 40.3 MtCO2 in Europe. This decline was predominantly due to the reduction of private passenger transport in five European countries (France, Germany, Italy, Spain, and the UK). During the first lockdown in April 2020, CO2 emissions from surface passenger transport declined by 50% in Europe, resulting in a 7.1% reduction in total CO2 emissions. After April 2020, private passenger travel recovered rapidly, while public passenger flows remained low. Solely prompted by the private sector, a rebound in total emissions and surface passenger transport emissions of 1.5% and 10.7%, respectively, was estimated at the end of the study period. The resulting situation of increased private and decreased public passenger transport is in contradiction to major climate goals, and without reversing these trends, emission reductions, as stated in the European Green Deal are unlikely to be achieved. Our study provides an analysis based on a detailed and timely set of data of surface passenger transport and points to options to grasp the momentum for innovative changes in passenger mobility.

5.
Finance Research Letters ; : 101955, 2021.
Article in English | ScienceDirect | ID: covidwho-1062356

ABSTRACT

ABSTRACT The outbreak of the COVID-19 pandemic has had significant negative impacts on financial markets, including energy stock markets. However, recently proposed and implemented green recovery plans may mean that clean energy firms demonstrate better performance than fossil fuel firms after the pandemic. As more voices call for the update of clean energy, theory on investor attention suggests investors will pay more attention to the potential to invest in clean energy stocks. Using a sample period of eight weeks before and during the pandemic, we find that the negative impact of the outbreak on both clean energy and fossil fuel firms is more significant for fossil fuel firms. Our results further show that during the pandemic there have been improved returns for clean energy firms as a consequence of investor attention, but not for fossil fuel firms. Our findings provide empirical evidence for the advantages of green recovery schemes in influencing financial markets, especially for clean energy stocks. These results suggest there are benefits for further promotion and implementation of green recovery stimulus measures post-pandemic.

6.
Nat. Clim. Change ; 7(10): 647-653, 20200701.
Article in English | WHO COVID, ELSEVIER | ID: covidwho-989824

ABSTRACT

Government policies during the COVID-19 pandemic have drastically altered patterns of energy demand around the world. Many international borders were closed and populations were confined to their homes, which reduced transport and changed consumption patterns. Here we compile government policies and activity data to estimate the decrease in CO2emissions during forced confinements. Daily global CO2emissions decreased by –17% (–11 to –25% for ±1σ) by early April 2020 compared with the mean 2019 levels, just under half from changes in surface transport. At their peak, emissions in individual countries decreased by –26% on average. The impact on 2020 annual emissions depends on the duration of the confinement, with a low estimate of –4% (–2 to –7%) if prepandemic conditions return by mid-June, and a high estimate of –7% (–3 to –13%) if some restrictions remain worldwide until the end of 2020. Government actions and economic incentives postcrisis will likely influence the global CO2emissions path for decades.

7.
Sci Total Environ ; 750: 141688, 2021 Jan 01.
Article in English | MEDLINE | ID: covidwho-712101

ABSTRACT

The outbreak of coronavirus disease 2019 (COVID-19) has caused tremendous loss to human life and economic decline in China and worldwide. It has significantly reduced gross domestic product (GDP), power generation, industrial activity and transport volume; thus, it has reduced fossil-related and cement-induced carbon dioxide (CO2) emissions in China. Due to time delays in obtaining activity data, traditional emissions inventories generally involve a 2-3-year lag. However, a timely assessment of COVID-19's impact on provincial CO2 emission reductions is crucial for accurately understanding the reduction and its implications for mitigation measures; furthermore, this information can provide constraints for modeling studies. Here, we used national and provincial GDP data and the China Emission Accounts and Datasets (CEADs) inventory to estimate the emission reductions in the first quarter (Q1) of 2020. We find a reduction of 257.7 Mt. CO2 (11.0%) over Q1 2019. The secondary industry contributed 186.8 Mt. CO2 (72.5%) to the total reduction, largely due to lower coal consumption and cement production. At the provincial level, Hubei contributed the most to the reductions (40.6 Mt) due to a notable decrease of 48.2% in the secondary industry. Moreover, transportation significantly contributed (65.1 Mt), with a change of -22.3% in freight transport and -59.1% in passenger transport compared with Q1 2019. We used a point, line and area sources (PLAS) method to test the GDP method, producing a close estimate (reduction of 10.6%). One policy implication is a change in people's working style and communication methods, realized by working from home and holding teleconferences, to reduce traffic emissions. Moreover, GDP is found to have potential merit in estimating emission changes when detailed energy activity data are unavailable. We provide provincial data that can serve as spatial disaggregation constraints for modeling studies and further support for both the carbon cycle community and policy makers.


Subject(s)
Coronavirus Infections , Coronavirus , Pandemics , Pneumonia, Viral , Betacoronavirus , COVID-19 , Carbon Dioxide/analysis , China , Humans , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL