Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
In Silico Pharmacol ; 10(1): 12, 2022.
Article in English | MEDLINE | ID: covidwho-1959193

ABSTRACT

Despite the availability of COVID-19 vaccines, additional more potent vaccines are still required against the emerging variations of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In the present investigation, we have identified a promising vaccine candidate against the Omicron (B.1.1.529) using immunoinformatics approaches. Various available tools like, the Immune Epitope Database server resource, and NetCTL-1.2, have been used for the identification of the promising T-cell and B-cell epitopes. The molecular docking was performed to check the interaction of TLR-3 receptors and validated 3D model of vaccine candidate. The codon optimization was done followed by cloning using SnapGene. Finally, In-silico immune simulation profile was also checked. The identified T-cell and B-cell epitopes have been selected based on their antigenicity (VaxiJen v2.0) and, allergenicity (AllerTOP v2.0). The identified epitopes with antigenic and non-allergenic properties were fused with the specific peptide linkers. In addition, the 3D model was constructed by the PHYRE2 server and validated using ProSA-web. The validated 3D model was further docked with the Toll-like receptor 3 (TLR3) and showed good interaction with the amino acids which indicate a promising vaccine candidate against the Omicron variant of SARS-CoV-2. Finally, the codon optimization, In-silico cloning and immune simulation profile was found to be satisfactory. Overall, the designed vaccine candidate has a potential against variant of SARS-Cov-2. However, further experimental studies are required to confirm.

2.
Int J Mol Sci ; 23(10)2022 May 16.
Article in English | MEDLINE | ID: covidwho-1862810

ABSTRACT

BA.2, a sublineage of Omicron BA.1, is now prominent in many parts of the world. Early reports have indicated that BA.2 is more infectious than BA.1. To gain insight into BA.2 mutation profile and the resulting impact of mutations on interactions with receptor and/or monoclonal antibodies, we analyzed available sequences, structures of Spike/receptor and Spike/antibody complexes, and conducted molecular dynamics simulations. The results showed that BA.2 had 50 high-prevalent mutations, compared to 48 in BA.1. Additionally, 17 BA.1 mutations were not present in BA.2. Instead, BA.2 had 19 unique mutations and a signature Delta variant mutation (G142D). The BA.2 had 28 signature mutations in Spike, compared to 30 in BA.1. This was due to two revertant mutations, S446G and S496G, in the receptor-binding domain (RBD), making BA.2 somewhat similar to Wuhan-Hu-1 (WT), which had G446 and G496. The molecular dynamics simulations showed that the RBD consisting of G446/G496 was more stable than S446/S496 containing RBD. Thus, our analyses suggested that BA.2 evolved with novel mutations (i) to maintain receptor binding similar to WT, (ii) evade the antibody binding greater than BA.1, and (iii) acquire mutation of the Delta variant that may be associated with the high infectivity.


Subject(s)
Antibodies, Monoclonal , Molecular Dynamics Simulation , Mutation
3.
J Autoimmun ; 126: 102779, 2022 01.
Article in English | MEDLINE | ID: covidwho-1561067

ABSTRACT

Severe Acute Respiratory Coronavirus (SARS-CoV-2) has been emerging in the form of different variants since its first emergence in early December 2019. A new Variant of Concern (VOC) named the Omicron variant (B.1.1.529) was reported recently. This variant has a large number of mutations in the S protein. To date, there exists a limited information on the Omicron variant. Here we present the analyses of mutation distribution, the evolutionary relationship of Omicron with previous variants, and probable structural impact of mutations on antibody binding. Our analyses show the presence of 46 high prevalence mutations specific to Omicron. Twenty-three of these are localized within the spike (S) protein and the rest localized to the other 3 structural proteins of the virus, the envelope (E), membrane (M), and nucleocapsid (N). Phylogenetic analysis showed that the Omicron is closely related to the Gamma (P.1) variant. The structural analyses showed that several mutations are localized to the region of the S protein that is the major target of antibodies, suggesting that the mutations in the Omicron variant may affect the binding affinities of antibodies to the S protein.


Subject(s)
Antibodies, Viral/immunology , COVID-19/virology , SARS-CoV-2/genetics , Binding Sites , COVID-19/immunology , Humans , Mutation , Phylogeny , Protein Structure, Tertiary , Spike Glycoprotein, Coronavirus/genetics
4.
J Virol ; 95(24): e0143721, 2021 11 23.
Article in English | MEDLINE | ID: covidwho-1434897

ABSTRACT

The outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for the coronavirus disease 19 (COVID-19) pandemic. Despite unprecedented research and developmental efforts, SARS-CoV-2-specific antivirals are still unavailable for the treatment of COVID-19. In most instances, SARS-CoV-2 infection initiates with the binding of Spike glycoprotein to the host cell ACE2 receptor. Utilizing the crystal structure of the ACE2/Spike receptor-binding domain (S-RBD) complex (PDB file 6M0J) in a computer-aided drug design approach, we identified and validated five potential inhibitors of S-RBD and ACE-2 interaction. Two of the five compounds, MU-UNMC-1 and MU-UNMC-2, blocked the entry of pseudovirus particles expressing SARS-CoV-2 Spike glycoprotein. In live SARS-CoV-2 infection assays, both compounds showed antiviral activity with IC50 values in the micromolar range (MU-UNMC-1: IC50 = 0.67 µM and MU-UNMC-2: IC50 = 1.72 µM) in human bronchial epithelial cells. Furthermore, MU-UNMC-1 and MU-UNMC-2 effectively blocked the replication of rapidly transmitting variants of concern: South African variant B.1.351 (IC50 = 9.27 and 3.00 µM) and Scotland variant B.1.222 (IC50 = 2.64 and 1.39 µM), respectively. Following these assays, we conducted "induced-fit (flexible) docking" to understand the binding mode of MU-UNMC-1/MU-UNMC-2 at the S-RBD/ACE2 interface. Our data showed that mutation N501Y (present in B.1.351 variant) alters the binding mode of MU-UNMC-2 such that it is partially exposed to the solvent and has reduced polar contacts. Finally, MU-UNMC-2 displayed high synergy with remdesivir, the only approved drug for treating hospitalized COVID-19 patients. IMPORTANCE The ongoing coronavirus infectious disease 2019 (COVID-19) pandemic is caused by a novel coronavirus named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). More than 207 million people have been infected globally, and 4.3 million have died due to this viral outbreak. While a few vaccines have been deployed, a SARS-CoV-2-specific antiviral for the treatment of COVID-19 is yet to be approved. As the interaction of SARS-CoV-2 Spike protein with ACE2 is critical for cellular entry, using a combination of a computer-aided drug design (CADD) approach and cell-based in vitro assays, we report the identification of five potential SARS-CoV-2 entry inhibitors. Out of the five, two compounds (MU-UNMC-1 and MU-UNMC-2) have antiviral activity against ancestral SARS-CoV-2 and emerging variants from South Africa and Scotland. Furthermore, MU-UNMC-2 acts synergistically with remdesivir (RDV), suggesting that RDV and MU-UNMC-2 can be developed as a combination therapy to treat COVID-19 patients.


Subject(s)
COVID-19/drug therapy , COVID-19/virology , SARS-CoV-2/drug effects , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/pharmacology , Alanine/analogs & derivatives , Alanine/pharmacology , Angiotensin-Converting Enzyme 2/metabolism , Animals , Antiviral Agents/pharmacology , Chemistry, Pharmaceutical/methods , Chlorocebus aethiops , Computer Simulation , Drug Design , HEK293 Cells , Humans , Inhibitory Concentration 50 , Models, Molecular , Molecular Dynamics Simulation , Mutation , Protein Binding , Protein Domains , Protein Interaction Domains and Motifs , Spike Glycoprotein, Coronavirus , Vero Cells
5.
Rev Cardiovasc Med ; 21(3): 365-384, 2020 09 30.
Article in English | MEDLINE | ID: covidwho-875129

ABSTRACT

Angiotensin-converting enzyme 2 (ACE2), the host cell-binding site for SAR-CoV-2, poses two-fold drug development problems. First, the role of ACE2 itself is still a matter of investigation, and no specific drugs are available targeting ACE2. Second, as a consequence of SARS-CoV-2 interaction with ACE2, there is an impairment of the renin-angiotensin system (RAS) involved in the functioning of vital organs like the heart, kidney, brain, and lungs. In developing antiviral drugs for COVID-19, ACE2, RNA-dependent RNA polymerase (RdRp), and the specific enzymes involved in the viral and cellular gene expression have been the primary targets. SARS-CoV-2 being a new virus with unusually high mortality, there has been a need to get medicines in an emergency, and the drug repurposing has been a primary strategy. Considering extensive mortality and morbidity throughout the world, we have made a maiden attempt to discover the drugs interacting with RAS and identify the lead compounds from herbal plants using molecular docking. Both host ACE2 and viral RNA-dependent RNA polymerase (RdRp) and ORF8 appear to be the primary targets for the treatment of COVID-19. While the drug repurposing of currently approved drugs seems to be one strategy for the treatment of COVID-19, purposing phytochemicals may be another essential strategy for discovering lead compounds. Using in silico molecular docking, we have identified a few phytochemicals that may provide insights into designing herbal and synthetic therapeutics to treat COVID-19.


Subject(s)
Betacoronavirus , Coronavirus Infections/therapy , Pandemics , Peptidyl-Dipeptidase A/metabolism , Pneumonia, Viral/therapy , Angiotensin-Converting Enzyme 2 , Antiviral Agents , COVID-19 , Coronavirus Infections/metabolism , Humans , Peptidyl-Dipeptidase A/drug effects , Pneumonia, Viral/metabolism , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL