Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
1.
J Ayurveda Integr Med ; 13(1): 100326, 2022.
Article in English | MEDLINE | ID: covidwho-1838940

ABSTRACT

BACKGROUND: Ayurvedic clinical profiling of COVID-19 is a pre-requisite to develop standalone and integrative treatment approaches. At present, Ayurvedic clinicians do not have access to COVID-19 patients in clinical settings. In these circumstances, a preliminary clinical profiling of COVID-19 based on review of modern medical and classical Ayurvedic literature with inputs from Allopathic clinicians treating COVID-19 patients assumes significance. OBJECTIVES: This paper aims to develop an Ayurvedic clinical profile of COVID-19 by literature review supported by analysis of clinical data of a cohort of COVID-19 patients. METHODS: The typical clinical presentation of COVID-19 was categorized based on a cluster of symptoms with reference to "Interim Clinical Guidance for Management of Patients with confirmed corona virus disease (COVID-19)" released by the US CDC. As the clinical presentation is found to vary widely, research papers reporting clinical symptoms of patient samples from different parts of the world were also reviewed to identify outliers and atypical presentations. Case records of fourteen COVID-19 patients treated at Medanta Hospital, Gurgaon were analyzed to compare symptomatology with data obtained from published literature. Further, a careful correlation was done with the data collected from selected Ayurvedic classical texts and expert views of clinical practitioners to arrive at a preliminary Ayurvedic clinical profile of COVID-19. RESULTS: COVID-19 can be understood from the Ayurvedic perspective as vatakapha dominant sannipatajvara of agantu origin with pittanubandha. The asymptomatic, presymptomatic, mild, moderate, severe and critical stages of COVID-19 with varying clinical presentations have been analysed on the basis of nidana, dosa, dusya, nidanapañcaka and satkriyakala to present a preliminary clinical profile of the disease. CONCLUSION: In this paper, we have demonstrated that a preliminary clinical profiling of COVID-19 from the Ayurvedic perspective is possible through literature review supported by discussions with Allopathic clinicians as well as examination of patient case records. The provisional diagnosis proposed can be further developed with continued review of literature, wider cooperation and teamwork with Allopathic physicians and access to clinical data as well as direct clinical assessment of COVID-19 patients.

2.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-321260

ABSTRACT

The impact of the COVID 19 pandemic varies depending on their exposure to the disease and their respective socio-economic conditions. The paper selects factors such as the density of population in that area, the age structure of the population, life expectancy, national income, health infrastructure, sanitation etc. are selected. The current health status of individuals captured by life expectancy and population density plays a determining role in death rates due to the COVID 19 pandemic. Consequently, the efforts of all the countries should be to improve the health status of individuals and focus on the better urban planning of density of population.

3.
J Ayurveda Integr Med ; 13(2): 100454, 2022.
Article in English | MEDLINE | ID: covidwho-1594675

ABSTRACT

BACKGROUND: After declaration of COVID- 19 as pandemic by WHO, countries adopted several measures to contain the spread as well as test and treat the patients. Further, as no effective management protocols to address this pandemic were available, a need was felt to explore the integration of modern and traditional medicines to treat COVID- 19 cases. OBJECTIVE: To undertake a study with Ayurveda formulation as add on to existing standard of care (SOC) and to compare the outcomes in terms of patient acceptability, the time to clinical recovery, hospital stay as well as any signs of drug-herb interaction between the Ayurveda formulation and the SOC. MATERIAL AND METHODS: An exploratory nonrandomized prospective study has been undertaken for comparing the outcomes of traditional Ayurvedic classical formulation of Tinospora cordifolia (Guduchi) and Piper longum (Pippali) as an add on to standard of care (SOC) using modern medicine with SOC alone. This has been done in mild and moderate COVID- 19 cases, at a tertiary care integrative Medicine hospital in the National Capital Region, Gurgaon, India. The outcomes have been evaluated in terms of the duration of hospital stay, the time to clinical recovery, safety and non- interference/interaction of Ayurvedic and Further, long term impact of COVID- 19 treatment has been evaluated using quality of life questionnaire after 3 months of discharge. RESULTS: Findings of present study reveals that the Ayurveda add-on formulation of T. cordifolia (Guduchi) and P. longum (Pippali) has reduced the length of hospital stay and improve the recovery time. General feeling of wellbeing and activity levels were better in the 3 month follow-up post discharge in the Ayurveda add-on group. CONCLUSION: Addition of Ayurveda formulation has reduced the time of recovery and duration of hospital stay. However, this formulation needs further investigated to provide more information on effective and safe herbal add-on to SOC for better outcomes to treatment of COVID-19 disease.

4.
Vaccines (Basel) ; 10(1)2021 Dec 31.
Article in English | MEDLINE | ID: covidwho-1580341

ABSTRACT

This study elucidated the clinical, humoral immune response and genomic analysis of vaccine breakthrough (VBT) infections after ChAdOx1 nCoV-19/Covishield vaccine in healthcare workers (HCWs). Amongst 1858 HCWs, 1639 had received either two doses (1346) or a single dose (293) of ChAdOx1 nCoV-19 vaccine. SARS-CoV-2 IgG antibodies and neutralizing antibodies were measured in the vaccinated group and the development of SARS-CoV-2 infection was monitored.Forty-six RT-PCR positive samples from the 203 positive samples were subjected to whole genome sequencing (WGS). Of the 203 (10.92%) infected HCWs, 21.46% (47/219) were non-vaccinated, which was significantly more than 9.52% (156/1639) who were vaccinated and infection was higher in doctors and nurses. Unvaccinated HCWs had 1.57 times higher risk compared to partially vaccinated HCWs and 2.49 times higher risk than those who were fully vaccinated.The partially vaccinated were at higher risk than the fully vaccinated (RR 1.58). Antibody non-response was seen in 3.44% (4/116), low antibody levels in 15.51% (18/116) and medium levels were found in 81.03% (94/116). Fully vaccinated HCWs had a higher antibody response at day 42 than those who were partially vaccinated (8.96 + 4.00 vs. 7.17 + 3.82). Whole genome sequencing of 46 samples revealed that the Delta variant (B.1.617.2) was predominant (69.5%). HCWs who had received two doses of vaccine showed better protection from mild, moderate, or severe infection, with a higher humoral immune response than those who had received a single dose. The genomic analysis revealed the predominance of the Delta variant (B.1.617.2) in the VBT infections.

5.
Lancet Respir Med ; 9(5): 511-521, 2021 05.
Article in English | MEDLINE | ID: covidwho-1537197

ABSTRACT

BACKGROUND: Global randomised controlled trials of the anti-IL-6 receptor antibody tocilizumab in patients admitted to hospital with COVID-19 have shown conflicting results but potential decreases in time to discharge and burden on intensive care. Tocilizumab reduced progression to mechanical ventilation and death in a trial population enriched for racial and ethnic minorities. We aimed to investigate whether tocilizumab treatment could prevent COVID-19 progression in the first multicentre randomised controlled trial of tocilizumab done entirely in a lower-middle-income country. METHODS: COVINTOC is an open-label, multicentre, randomised, controlled, phase 3 trial done at 12 public and private hospitals across India. Adults (aged ≥18 years) admitted to hospital with moderate to severe COVID-19 (Indian Ministry of Health grading) confirmed by positive SARS-CoV-2 PCR result were randomly assigned (1:1 block randomisation) to receive tocilizumab 6 mg/kg plus standard care (the tocilizumab group) or standard care alone (the standard care group). The primary endpoint was progression of COVID-19 (from moderate to severe or from severe to death) up to day 14 in the modified intention-to-treat population of all participants who had at least one post-baseline assessment for the primary endpoint. Safety was assessed in all randomly assigned patients. The trial is completed and registered with the Clinical Trials Registry India (CTRI/2020/05/025369). FINDINGS: 180 patients were recruited between May 30, 2020, and Aug 31, 2020, and randomly assigned to the tocilizumab group (n=90) or the standard care group (n=90). One patient randomly assigned to the standard care group inadvertently received tocilizumab at baseline and was included in the tocilizumab group for all analyses. One patient randomly assigned to the standard care group withdrew consent after the baseline visit and did not receive any study medication and was not included in the modified intention-to-treat population but was still included in safety analyses. 75 (82%) of 91 in the tocilizumab group and 68 (76%) of 89 in the standard care group completed 28 days of follow-up. Progression of COVID-19 up to day 14 occurred in eight (9%) of 91 patients in the tocilizumab group and 11 (13%) of 88 in the standard care group (difference -3·71 [95% CI -18·23 to 11·19]; p=0·42). 33 (36%) of 91 patients in the tocilizumab group and 22 (25%) of 89 patients in the standard care group had adverse events; 18 (20%) and 15 (17%) had serious adverse events. The most common adverse event was acute respiratory distress syndrome, reported in seven (8%) patients in each group. Grade 3 adverse events were reported in two (2%) patients in the tocilizumab group and five (6%) patients in the standard care group. There were no grade 4 adverse events. Serious adverse events were reported in 18 (20%) patients in the tocilizumab group and 15 (17%) in the standard care group; 13 (14%) and 15 (17%) patients died during the study. INTERPRETATION: Routine use of tocilizumab in patients admitted to hospital with moderate to severe COVID-19 is not supported. However, post-hoc evidence from this study suggests tocilizumab might still be effective in patients with severe COVID-19 and so should be investigated further in future studies. FUNDING: Medanta Institute of Education and Research, Roche India, Cipla India, and Action COVID-19 India.


Subject(s)
Antibodies, Monoclonal, Humanized , COVID-19 , Cytokine Release Syndrome , Receptors, Interleukin-6/antagonists & inhibitors , Respiratory Distress Syndrome , SARS-CoV-2/isolation & purification , Antibodies, Monoclonal, Humanized/administration & dosage , Antibodies, Monoclonal, Humanized/adverse effects , COVID-19/complications , COVID-19/immunology , COVID-19/mortality , COVID-19/therapy , Critical Care/methods , Cytokine Release Syndrome/drug therapy , Cytokine Release Syndrome/etiology , Cytokine Release Syndrome/immunology , Drug Monitoring/methods , Female , Humans , Immunologic Factors/administration & dosage , Immunologic Factors/adverse effects , India , Male , Middle Aged , Mortality , Respiration, Artificial/methods , Respiratory Distress Syndrome/diagnosis , Respiratory Distress Syndrome/etiology , Severity of Illness Index , Treatment Outcome
6.
Science ; 374(6570): 995-999, 2021 Nov 19.
Article in English | MEDLINE | ID: covidwho-1526449

ABSTRACT

Delhi, the national capital of India, experienced multiple severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) outbreaks in 2020 and reached population seropositivity of >50% by 2021. During April 2021, the city became overwhelmed by COVID-19 cases and fatalities, as a new variant, B.1.617.2 (Delta), replaced B.1.1.7 (Alpha). A Bayesian model explains the growth advantage of Delta through a combination of increased transmissibility and reduced sensitivity to immune responses generated against earlier variants (median estimates: 1.5-fold greater transmissibility and 20% reduction in sensitivity). Seropositivity of an employee and family cohort increased from 42% to 87.5% between March and July 2021, with 27% reinfections, as judged by increased antibody concentration after a previous decline. The likely high transmissibility and partial evasion of immunity by the Delta variant contributed to an overwhelming surge in Delhi.


Subject(s)
COVID-19/epidemiology , COVID-19/virology , Genome, Viral , Adolescent , Adult , COVID-19/immunology , COVID-19/transmission , Child , Humans , Immune Evasion , India/epidemiology , Molecular Epidemiology , Phylogeny , Reinfection , Seroepidemiologic Studies , Young Adult
7.
J Alzheimers Dis ; 83(2): 523-530, 2021.
Article in English | MEDLINE | ID: covidwho-1459395

ABSTRACT

Coronavirus (COVID-19) has emerged as a human catastrophe worldwide, and it has impacted human life more detrimentally than the combined effect of World Wars I and II. Various research studies reported that the disease is not confined to the respiratory system but also leads to neurological and neuropsychiatric disorders suggesting that the virus is potent to affect the central nervous system (CNS). Moreover, the damage to CNS may continue to rise even after the COVID-19 infection subsides which may further induce a long-term impact on the brain, resulting in cognitive impairment. Neuroimaging techniques is the ideal platform to detect and quantify pathological manifestations in the brain of COVID-19 survivors. In this context, a scheme based on structural, spectroscopic, and behavioral studies could be executed to monitor the gradual changes in the brain non-invasively due to COVID-19 which may further help in quantifying the impact of COVID-19 on the mental health of the survivors. Extensive research is required in this direction for identifying the mechanism and implications of COVID-19 in the brain. Cohort studies are urgently required for monitoring the effects of this pandemic on individuals of various subtypes longitudinally.


Subject(s)
Brain/diagnostic imaging , COVID-19/complications , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/virology , Brain/pathology , Brain Mapping/methods , COVID-19/diagnostic imaging , COVID-19/pathology , Cognitive Dysfunction/pathology , Humans , Magnetic Resonance Spectroscopy , Oxidative Stress/physiology , SARS-CoV-2 , Survivors
8.
J. Pure Appl. Microbiol. ; (14): 945-956, 20200530.
Article in English | WHO COVID, ELSEVIER | ID: covidwho-1395585

ABSTRACT

Coronavirus Disease 2019 (COVID-19), caused by Severe Acute Respiratory Syndrome Virus-2 (SARSCoV-2), pandemic has caused huge panic, havoc and global threats worldwide. The origin of this virus has been linked to animals, intermediate host is still to be identified, and studies are being carried out that how it got transmitted to humans and acquired rapid human-to-human transmission. Within a short time period of only 05 months, SARS-CoV-2 has spread to 213 countries, and till 28th May, 2020, nearly 5.8 million confirmed cases have been reported while taking lives of 0.36 million persons. Seeing the current situation of rapid increase in COVID-19 cases daily in many countries, this seems to be the deadliest pandemic after the 1918 Spanish Flu. There is currently no specific effective treatment for COVID-19 and also in absence of vaccine the radical cure of the disease is far away. Researchers are pacing high to design and develop effective vaccines, drugs and therapeutics to counter COVID-19, however such efforts, clinical trials, necessary approvals and then to reach the level of bulk production of many millions of doses may still take much time. Prevention and control of COVID-19 outbreaks requires an evidence-based, multi-factorial and effective mitigation strategy to be adopted. The current review discusses on the research advancements, challenges and opportunities in COVID 19 management with a focus on its transmission, prevention, treatment and control.

9.
Front Microbiol ; 12: 653399, 2021.
Article in English | MEDLINE | ID: covidwho-1389208

ABSTRACT

Co-infection with ancillary pathogens is a significant modulator of morbidity and mortality in infectious diseases. There have been limited reports of co-infections accompanying SARS-CoV-2 infections, albeit lacking India specific study. The present study has made an effort toward elucidating the prevalence, diversity and characterization of co-infecting respiratory pathogens in the nasopharyngeal tract of SARS-CoV-2 positive patients. Two complementary metagenomics based sequencing approaches, Respiratory Virus Oligo Panel (RVOP) and Holo-seq, were utilized for unbiased detection of co-infecting viruses and bacteria. The limited SARS-CoV-2 clade diversity along with differential clinical phenotype seems to be partially explained by the observed spectrum of co-infections. We found a total of 43 bacteria and 29 viruses amongst the patients, with 18 viruses commonly captured by both the approaches. In addition to SARS-CoV-2, Human Mastadenovirus, known to cause respiratory distress, was present in a majority of the samples. We also found significant differences of bacterial reads based on clinical phenotype. Of all the bacterial species identified, ∼60% have been known to be involved in respiratory distress. Among the co-pathogens present in our sample cohort, anaerobic bacteria accounted for a preponderance of bacterial diversity with possible role in respiratory distress. Clostridium botulinum, Bacillus cereus and Halomonas sp. are anaerobes found abundantly across the samples. Our findings highlight the significance of metagenomics based diagnosis and detection of SARS-CoV-2 and other respiratory co-infections in the current pandemic to enable efficient treatment administration and better clinical management. To our knowledge this is the first study from India with a focus on the role of co-infections in SARS-CoV-2 clinical sub-phenotype.

10.
J Alzheimers Dis ; 83(2): 523-530, 2021.
Article in English | MEDLINE | ID: covidwho-1305620

ABSTRACT

Coronavirus (COVID-19) has emerged as a human catastrophe worldwide, and it has impacted human life more detrimentally than the combined effect of World Wars I and II. Various research studies reported that the disease is not confined to the respiratory system but also leads to neurological and neuropsychiatric disorders suggesting that the virus is potent to affect the central nervous system (CNS). Moreover, the damage to CNS may continue to rise even after the COVID-19 infection subsides which may further induce a long-term impact on the brain, resulting in cognitive impairment. Neuroimaging techniques is the ideal platform to detect and quantify pathological manifestations in the brain of COVID-19 survivors. In this context, a scheme based on structural, spectroscopic, and behavioral studies could be executed to monitor the gradual changes in the brain non-invasively due to COVID-19 which may further help in quantifying the impact of COVID-19 on the mental health of the survivors. Extensive research is required in this direction for identifying the mechanism and implications of COVID-19 in the brain. Cohort studies are urgently required for monitoring the effects of this pandemic on individuals of various subtypes longitudinally.


Subject(s)
Brain/diagnostic imaging , COVID-19/complications , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/virology , Brain/pathology , Brain Mapping/methods , COVID-19/diagnostic imaging , COVID-19/pathology , Cognitive Dysfunction/pathology , Humans , Magnetic Resonance Spectroscopy , Oxidative Stress/physiology , SARS-CoV-2 , Survivors
12.
Biosens Bioelectron ; 187: 113280, 2021 Sep 01.
Article in English | MEDLINE | ID: covidwho-1213052

ABSTRACT

In order to define public health policies, simple, inexpensive and robust detection methods for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are vital for mass-testing in resource limited settings. The current choice of molecular methods for identification of SARS-CoV-2 infection includes nucleic acid-based testing (NAT) for viral genetic material and antigen-based testing for viral protein identification. Host exposure is detected using antibody detection assays. While NATs require sophisticated instrument and trained manpower, antigen tests are plagued by their low sensitivity and specificity. Thus, a test offering sensitive detection for presence of infection as a colorimetric readout holds promise to enable mass testing in resource constrained environments by minimally trained personnel. Here we present a novel HRPZyme Assisted Recognition of Infection by Optical Measurement (HARIOM) assay which combines specificity of NATs with sensitivity of enzymatic assays resulting in enhanced signal to noise ratios in an easily interpretable colorimetric readout. Using this assay, we could detect up to 102 copies of synthetic viral RNA spiked in saliva as a detection matrix. Validating our assay on suspected human subjects, we found concordance with PCR based readouts with visible colorimetric distinction between positive and negative samples in less than an hour. We believe that this assay holds the potential to aid in mass screening to detect SARS-CoV-2 infection by facilitating colorimetric detection with minimal resources and less trained personnel.


Subject(s)
Biosensing Techniques , COVID-19 , Humans , Nucleic Acid Amplification Techniques , RNA, Viral , SARS-CoV-2 , Saliva , Sensitivity and Specificity
14.
Tribology & Lubrication Technology ; 77(1):18-20, 2021.
Article in English | ProQuest Central | ID: covidwho-1040516

ABSTRACT

The Chinese passenger car motor oil (PCMO) market is projected to recover and grow over the next five years. While traditional lubricants marketing channels will continue to be the mainstay, new alternative channels are providing opportunities for greater growth as people adapt to a post-COVID-19 world. Currently, alternative channels account for less than 10% of the PCMO market. However, they are projected to double by 2025 as consumers embrace these new means of vehicle services and lubricants procurement. These new channels include OEM garages, online to offline and other Internet platforms and car-sharing platforms. The growth in these alternative channels has helped them migrate from lubricant procurement from smaller second- and third-tier lubricant distributors to first-tier distributor or direct sales from lubricant marketers. Third-tier distributors are most likely to lose the greatest volume from this shift, and these distributors will be forced to adapt their business model to more of a logistic-only service, as they will lose some of the lubricant's sales aspect of their current business.

15.
Comput Biol Med ; 128: 104126, 2021 01.
Article in English | MEDLINE | ID: covidwho-996804

ABSTRACT

Genes act in groups known as gene modules, which accomplish different cellular functions in the body. The modular nature of gene networks was used in this study to detect functionally enriched modules in samples obtained from COPD patients. We analyzed modules extracted from COPD samples and identified crucial genes associated with the disease COVID-19. We also extracted modules from a COVID-19 dataset and analyzed a suspected set of genes that may be associated with this deadly disease. We used information available for two other viruses that cause SARS and MERS because their physiology is similar to that of the COVID-19 virus. We report several crucial genes associated with COVID-19: RPA2, POLD4, MAPK8, IRF7, JUN, NFKB1, NFKBIA, CD40LG, FASLG, ICAM1, LIFR, STAT2 and CCR1. Most of these genes are related to the immune system and respiratory organs, which emphasizes the fact that COPD weakens this system and makes patients more susceptible to developing severe COVID-19.


Subject(s)
COVID-19/genetics , Databases, Nucleic Acid , Genetic Predisposition to Disease , Pulmonary Disease, Chronic Obstructive/genetics , SARS-CoV-2/genetics , COVID-19/immunology , Humans , Pulmonary Disease, Chronic Obstructive/immunology , Pulmonary Disease, Chronic Obstructive/virology , SARS-CoV-2/immunology , Severity of Illness Index
17.
Wellcome Open Res ; 5: 184, 2020.
Article in English | MEDLINE | ID: covidwho-808195

ABSTRACT

Background: India first detected SARS-CoV-2, causal agent of COVID-19 in late January 2020, imported from Wuhan, China. From March 2020 onwards, the importation of cases from countries in the rest of the world followed by seeding of local transmission triggered further outbreaks in India. Methods: We used ARTIC protocol-based tiling amplicon sequencing of SARS-CoV-2 (n=104) from different states of India using a combination of MinION and MinIT sequencing from Oxford Nanopore Technology to understand how introduction and local transmission occurred. Results: The analyses revealed multiple introductions of SARS-CoV-2 genomes, including the A2a cluster from Europe and the USA, A3 cluster from Middle East and A4 cluster (haplotype redefined) from Southeast Asia (Indonesia, Thailand and Malaysia) and Central Asia (Kyrgyzstan). The local transmission and persistence of genomes A4, A2a and A3 was also observed in the studied locations. The most prevalent genomes with patterns of variance (confined in a cluster) remain unclassified, and are here proposed as A4-clade based on its divergence within the A cluster. Conclusions: The viral haplotypes may link their persistence to geo-climatic conditions and host response. Multipronged strategies including molecular surveillance based on real-time viral genomic data is of paramount importance for a timely management of the pandemic.

SELECTION OF CITATIONS
SEARCH DETAIL