ABSTRACT
Autoantibodies (autoAbs) that neutralize type 1 interferons (T1IFNs) are a major risk factor associated with developing critical COVID-19 disease and are most commonly found in individuals over age 70 and in patients with genetic or acquired thymic defects. Swift identification of autoAb-positive individuals may allow targeted interventions to prevent critical COVID-19 disease. Herein, we provide a workflow and protocols aimed at rapidly identifying individuals who are autoAb positive from a large cohort. Basic Protocol 1 describes a multiplex particle-based assay to screen large cohorts of individuals for binding levels of anti-T1IFN autoAbs, and Basic Protocol 2 describes a functional assay to test if autoAbs in patient plasma can block T1IFN-induced JAK/STAT signaling. © Published 2022. This article is a U.S. Government work and is in the public domain in the USA. Basic Protocol 1: Multiplex particle-based bead assay to screen for binding levels of anti-type 1 interferon autoantibodies Alternate Protocol: Multiplex particle-based bead assay to screen for binding levels of anti-type 1 interferon immunoglobulin subtypes and isotypes Support Protocol: Coupling type 1 interferons (IFN-α, IFN-ß, and IFN-ω) to magnetic beads Basic Protocol 2: pSTAT1 functional assay to test for neutralization activity of anti-type 1 interferon autoantibodies.
Subject(s)
COVID-19 , Interferon Type I , Aged , Autoantibodies , Humans , Interferon-alpha , Interferon-betaABSTRACT
Immune and inflammatory responses to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) contribute to disease severity of coronavirus disease 2019 (COVID-19). However, the utility of specific immune-based biomarkers to predict clinical outcome remains elusive. Here, we analyzed levels of 66 soluble biomarkers in 175 Italian patients with COVID-19 ranging from mild/moderate to critical severity and assessed type I IFN-, type II IFN-, and NF-κB-dependent whole-blood transcriptional signatures. A broad inflammatory signature was observed, implicating activation of various immune and nonhematopoietic cell subsets. Discordance between IFN-α2a protein and IFNA2 transcript levels in blood suggests that type I IFNs during COVID-19 may be primarily produced by tissue-resident cells. Multivariable analysis of patients' first samples revealed 12 biomarkers (CCL2, IL-15, soluble ST2 [sST2], NGAL, sTNFRSF1A, ferritin, IL-6, S100A9, MMP-9, IL-2, sVEGFR1, IL-10) that when increased were independently associated with mortality. Multivariate analyses of longitudinal biomarker trajectories identified 8 of the aforementioned biomarkers (IL-15, IL-2, NGAL, CCL2, MMP-9, sTNFRSF1A, sST2, IL-10) and 2 additional biomarkers (lactoferrin, CXCL9) that were substantially associated with mortality when increased, while IL-1α was associated with mortality when decreased. Among these, sST2, sTNFRSF1A, IL-10, and IL-15 were consistently higher throughout the hospitalization in patients who died versus those who recovered, suggesting that these biomarkers may provide an early warning of eventual disease outcome.
Subject(s)
COVID-19/immunology , COVID-19/mortality , Adrenal Cortex Hormones/therapeutic use , Adult , Aged , Anti-Bacterial Agents/therapeutic use , Antibodies, Monoclonal, Humanized/therapeutic use , Antiviral Agents/therapeutic use , Azithromycin/therapeutic use , Biomarkers , COVID-19/genetics , COVID-19/therapy , Calgranulin B/genetics , Calgranulin B/immunology , Case-Control Studies , Chemokine CCL2/genetics , Chemokine CCL2/immunology , Chemokine CXCL9/genetics , Chemokine CXCL9/immunology , Enzyme Inhibitors/therapeutic use , Female , Ferritins/genetics , Ferritins/immunology , Gene Expression Profiling , Humans , Hydroxychloroquine/therapeutic use , Immunologic Factors/therapeutic use , Interferon Type I/genetics , Interferon Type I/immunology , Interferon-gamma/genetics , Interferon-gamma/immunology , Interleukin-1 Receptor-Like 1 Protein/genetics , Interleukin-1 Receptor-Like 1 Protein/immunology , Interleukin-10/genetics , Interleukin-10/immunology , Interleukin-15/genetics , Interleukin-15/immunology , Interleukin-2/genetics , Interleukin-2/immunology , Interleukin-6/genetics , Interleukin-6/immunology , Lactoferrin/genetics , Lactoferrin/immunology , Lipocalin-2/genetics , Lipocalin-2/immunology , Male , Matrix Metalloproteinase 9/genetics , Matrix Metalloproteinase 9/immunology , Middle Aged , Multivariate Analysis , NF-kappa B/genetics , NF-kappa B/immunologyABSTRACT
Interindividual clinical variability in the course of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is vast. We report that at least 101 of 987 patients with life-threatening coronavirus disease 2019 (COVID-19) pneumonia had neutralizing immunoglobulin G (IgG) autoantibodies (auto-Abs) against interferon-ω (IFN-ω) (13 patients), against the 13 types of IFN-α (36), or against both (52) at the onset of critical disease; a few also had auto-Abs against the other three type I IFNs. The auto-Abs neutralize the ability of the corresponding type I IFNs to block SARS-CoV-2 infection in vitro. These auto-Abs were not found in 663 individuals with asymptomatic or mild SARS-CoV-2 infection and were present in only 4 of 1227 healthy individuals. Patients with auto-Abs were aged 25 to 87 years and 95 of the 101 were men. A B cell autoimmune phenocopy of inborn errors of type I IFN immunity accounts for life-threatening COVID-19 pneumonia in at least 2.6% of women and 12.5% of men.