Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Acta Pharmacol Sin ; 2022 Mar 16.
Article in English | MEDLINE | ID: covidwho-1747246

ABSTRACT

VV116 (JT001) is an oral drug candidate of nucleoside analog against SARS-CoV-2. The purpose of the three phase I studies was to evaluate the safety, tolerability, and pharmacokinetics of single and multiple ascending oral doses of VV116 in healthy subjects, as well as the effect of food on the pharmacokinetics and safety of VV116. Three studies were launched sequentially: Study 1 (single ascending-dose study, SAD), Study 2 (multiple ascending-dose study, MAD), and Study 3 (food-effect study, FE). A total of 86 healthy subjects were enrolled in the studies. VV116 tablets or placebo were administered per protocol requirements. Blood samples were collected at the scheduled time points for pharmacokinetic analysis. 116-N1, the metabolite of VV116, was detected in plasma and calculated for the PK parameters. In SAD, AUC and Cmax increased in an approximately dose-proportional manner in the dose range of 25-800 mg. T1/2 was within 4.80-6.95 h. In MAD, the accumulation ratio for Cmax and AUC indicated a slight accumulation upon repeated dosing of VV116. In FE, the standard meal had no effect on Cmax and AUC of VV116. No serious adverse event occurred in the studies, and no subject withdrew from the studies due to adverse events. Thus, VV116 exhibited satisfactory safety and tolerability in healthy subjects, which supports the continued investigation of VV116 in patients with COVID-19.

3.
Bioorg Med Chem ; 46: 116364, 2021 09 15.
Article in English | MEDLINE | ID: covidwho-1406212

ABSTRACT

The nucleoside metabolite of remdesivir, GS-441524 displays potent anti-SARS-CoV-2 efficacy, and is being evaluated in clinical as an oral antiviral therapeutic for COVID-19. However, this nucleoside has a poor oral bioavailability in non-human primates, which may affect its therapeutic efficacy. Herein, we reported a variety of GS-441524 analogs with modifications on the base or the sugar moiety, as well as some prodrug forms, including five isobutyryl esters, two l-valine esters, and one carbamate. Among the new nucleosides, only the 7-fluoro analog 3c had moderate anti-SARS-CoV-2 activity, and its phosphoramidate prodrug 7 exhibited reduced activity in Vero E6 cells. As for the prodrugs, the 3'-isobutyryl ester 5a, the 5'-isobutyryl ester 5c, and the tri-isobutyryl ester 5g hydrobromide showed excellent oral bioavailabilities (F = 71.6%, 86.6% and 98.7%, respectively) in mice, which provided good insight into the pharmacokinetic optimization of GS-441524.


Subject(s)
Adenosine/analogs & derivatives , Antiviral Agents/pharmacology , SARS-CoV-2/drug effects , Adenosine/pharmacokinetics , Adenosine/pharmacology , Adenosine/toxicity , Animals , Antiviral Agents/chemical synthesis , Antiviral Agents/pharmacokinetics , Antiviral Agents/toxicity , Chlorocebus aethiops , Male , Mice, Inbred ICR , Microbial Sensitivity Tests , Prodrugs/chemical synthesis , Prodrugs/pharmacokinetics , Prodrugs/pharmacology , Prodrugs/toxicity , Vero Cells
4.
Cell Res ; 31(8): 847-860, 2021 08.
Article in English | MEDLINE | ID: covidwho-1387284

ABSTRACT

Cytokine storm and multi-organ failure are the main causes of SARS-CoV-2-related death. However, the origin of excessive damages caused by SARS-CoV-2 remains largely unknown. Here we show that the SARS-CoV-2 envelope (2-E) protein alone is able to cause acute respiratory distress syndrome (ARDS)-like damages in vitro and in vivo. 2-E proteins were found to form a type of pH-sensitive cation channels in bilayer lipid membranes. As observed in SARS-CoV-2-infected cells, heterologous expression of 2-E channels induced rapid cell death in various susceptible cell types and robust secretion of cytokines and chemokines in macrophages. Intravenous administration of purified 2-E protein into mice caused ARDS-like pathological damages in lung and spleen. A dominant negative mutation lowering 2-E channel activity attenuated cell death and SARS-CoV-2 production. Newly identified channel inhibitors exhibited potent anti-SARS-CoV-2 activity and excellent cell protective activity in vitro and these activities were positively correlated with inhibition of 2-E channel. Importantly, prophylactic and therapeutic administration of the channel inhibitor effectively reduced both the viral load and secretion of inflammation cytokines in lungs of SARS-CoV-2-infected transgenic mice expressing human angiotensin-converting enzyme 2 (hACE-2). Our study supports that 2-E is a promising drug target against SARS-CoV-2.


Subject(s)
Antiviral Agents/metabolism , COVID-19/pathology , Coronavirus Envelope Proteins/metabolism , Respiratory Distress Syndrome/etiology , SARS-CoV-2/metabolism , Angiotensin-Converting Enzyme 2/genetics , Animals , Antiviral Agents/chemistry , Antiviral Agents/therapeutic use , Apoptosis , COVID-19/complications , COVID-19/drug therapy , COVID-19/virology , Coronavirus Envelope Proteins/antagonists & inhibitors , Coronavirus Envelope Proteins/genetics , Cytokines/metabolism , Disease Models, Animal , Half-Life , Humans , Lung/metabolism , Lung/pathology , Mice , Mice, Inbred C57BL , Mice, Transgenic , Mutagenesis, Site-Directed , SARS-CoV-2/isolation & purification , SARS-CoV-2/pathogenicity , Spleen/metabolism , Spleen/pathology , Viral Load , Virulence
5.
Nat Commun ; 12(1): 3623, 2021 06 15.
Article in English | MEDLINE | ID: covidwho-1270656

ABSTRACT

The ongoing pandemic of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) urgently needs an effective cure. 3CL protease (3CLpro) is a highly conserved cysteine proteinase that is indispensable for coronavirus replication, providing an attractive target for developing broad-spectrum antiviral drugs. Here we describe the discovery of myricetin, a flavonoid found in many food sources, as a non-peptidomimetic and covalent inhibitor of the SARS-CoV-2 3CLpro. Crystal structures of the protease bound with myricetin and its derivatives unexpectedly revealed that the pyrogallol group worked as an electrophile to covalently modify the catalytic cysteine. Kinetic and selectivity characterization together with theoretical calculations comprehensively illustrated the covalent binding mechanism of myricetin with the protease and demonstrated that the pyrogallol can serve as an electrophile warhead. Structure-based optimization of myricetin led to the discovery of derivatives with good antiviral activity and the potential of oral administration. These results provide detailed mechanistic insights into the covalent mode of action by pyrogallol-containing natural products and a template for design of non-peptidomimetic covalent inhibitors against 3CLpros, highlighting the potential of pyrogallol as an alternative warhead in design of targeted covalent ligands.


Subject(s)
Coronavirus 3C Proteases/drug effects , Pyrogallol/chemistry , Pyrogallol/isolation & purification , Pyrogallol/pharmacology , SARS-CoV-2/drug effects , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , COVID-19/drug therapy , Coronavirus Papain-Like Proteases , Drug Design , Flavonoids , HEK293 Cells , Humans , Kinetics , Ligands , Molecular Dynamics Simulation , Protease Inhibitors/chemistry , Protease Inhibitors/pharmacology , Viral Nonstructural Proteins/chemistry
6.
Cell Res ; 31(8): 847-860, 2021 08.
Article in English | MEDLINE | ID: covidwho-1265947

ABSTRACT

Cytokine storm and multi-organ failure are the main causes of SARS-CoV-2-related death. However, the origin of excessive damages caused by SARS-CoV-2 remains largely unknown. Here we show that the SARS-CoV-2 envelope (2-E) protein alone is able to cause acute respiratory distress syndrome (ARDS)-like damages in vitro and in vivo. 2-E proteins were found to form a type of pH-sensitive cation channels in bilayer lipid membranes. As observed in SARS-CoV-2-infected cells, heterologous expression of 2-E channels induced rapid cell death in various susceptible cell types and robust secretion of cytokines and chemokines in macrophages. Intravenous administration of purified 2-E protein into mice caused ARDS-like pathological damages in lung and spleen. A dominant negative mutation lowering 2-E channel activity attenuated cell death and SARS-CoV-2 production. Newly identified channel inhibitors exhibited potent anti-SARS-CoV-2 activity and excellent cell protective activity in vitro and these activities were positively correlated with inhibition of 2-E channel. Importantly, prophylactic and therapeutic administration of the channel inhibitor effectively reduced both the viral load and secretion of inflammation cytokines in lungs of SARS-CoV-2-infected transgenic mice expressing human angiotensin-converting enzyme 2 (hACE-2). Our study supports that 2-E is a promising drug target against SARS-CoV-2.


Subject(s)
Antiviral Agents/metabolism , COVID-19/pathology , Coronavirus Envelope Proteins/metabolism , Respiratory Distress Syndrome/etiology , SARS-CoV-2/metabolism , Angiotensin-Converting Enzyme 2/genetics , Animals , Antiviral Agents/chemistry , Antiviral Agents/therapeutic use , Apoptosis , COVID-19/complications , COVID-19/drug therapy , COVID-19/virology , Coronavirus Envelope Proteins/antagonists & inhibitors , Coronavirus Envelope Proteins/genetics , Cytokines/metabolism , Disease Models, Animal , Half-Life , Humans , Lung/metabolism , Lung/pathology , Mice , Mice, Inbred C57BL , Mice, Transgenic , Mutagenesis, Site-Directed , SARS-CoV-2/isolation & purification , SARS-CoV-2/pathogenicity , Spleen/metabolism , Spleen/pathology , Viral Load , Virulence
7.
J Org Chem ; 86(7): 5065-5072, 2021 04 02.
Article in English | MEDLINE | ID: covidwho-1139704

ABSTRACT

Currently, remdesivir is the first and only FDA-approved antiviral drug for COVID-19 treatment. Adequate supplies of remdesivir are highly warranted to cope with this global public health crisis. Herein, we report a Weinreb amide approach for preparing the key intermediate of remdesivir in the glycosylation step where overaddition side reactions are eliminated. Starting from 2,3,5-tri-O-benzyl-d-ribonolactone, the preferred route consisting of three sequential steps (Weinreb amidation, O-TMS protection, and Grignard addition) enables a high-yield (65%) synthesis of this intermediate at a kilogram scale. In particular, the undesirable PhMgCl used in previous methods was successfully replaced by MeMgBr. This approach proved to be suitable for the scalable production of the key remdesivir intermediate.


Subject(s)
Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , Amides/chemistry , Antiviral Agents/chemical synthesis , Adenosine Monophosphate/chemical synthesis , Alanine/chemical synthesis
8.
J Pharm Biomed Anal ; 194: 113806, 2021 Feb 05.
Article in English | MEDLINE | ID: covidwho-1065380

ABSTRACT

Remdesivir is a prodrug of the nucleotide analogue and used for COVID-19 treatment. However, the bioanalysis of the active metabolites remdesivir nucleotide triphosphate (RTP) and its precursor remdesivir nucleotide monophosphate (RMP) is very challenging. Herein, we established a novel method to separate RTP and RMP on a BioBasic AX column and quantified them by high-performance liquid chromatography-tandem mass spectrometry in positive electrospray ionization mode. Stepwise, we optimized chromatographic retention on an anion exchange column, improved stability in matrix through the addition of 5,5'-dithiobis-(2nitrobenzoic acid) and PhosSTOP EASYpack, and increased recovery by dissociation of tight protein binding with 2 % formic acid aqueous solution. The method allowed lower limit of quantification of 20 nM for RMP and 10 nM for RTP. Method validation demonstrated acceptable accuracy (93.6%-103% for RMP, 94.5%-107% for RTP) and precision (RSD < 11.9 % for RMP, RSD < 11.4 % for RTP), suggesting that it was sensitive and robust for simultaneous quantification of RMP and RTP. The method was successfully applied to analyze RMP and RTP in mouse tissues. In general, the developed method is suitable to monitor RMP and RTP, and provides a useful approach for exploring more detailed effects of remdesivir in treating diseases.


Subject(s)
Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , Prodrugs/analysis , Prodrugs/metabolism , Tandem Mass Spectrometry/methods , Adenosine Monophosphate/analysis , Adenosine Monophosphate/metabolism , Adenosine Monophosphate/pharmacology , Alanine/analysis , Alanine/metabolism , Alanine/pharmacology , Animals , Antiviral Agents/analysis , Antiviral Agents/metabolism , Antiviral Agents/pharmacology , COVID-19/drug therapy , COVID-19/metabolism , Chromatography, Liquid/methods , Humans , Liver/chemistry , Liver/drug effects , Liver/metabolism , Male , Mice , Prodrugs/pharmacology
9.
Acta Pharmacol Sin ; 42(7): 1195-1200, 2021 Jul.
Article in English | MEDLINE | ID: covidwho-844311

ABSTRACT

Remdesivir (RDV) exerts anti-severe acute respiratory coronavirus 2 activity following metabolic activation in the target tissues. However, the pharmacokinetics and tissue distributions of the parent drug and its active metabolites have been poorly characterized to date. Blood and tissue levels were evaluated in the current study. After intravenous administration of 20 mg/kg RDV in mice, the concentrations of the parent drug, nucleotide monophosphate (RMP) and triphosphate (RTP), as well as nucleoside (RN), in the blood, heart, liver, lung, kidney, testis, and small intestine were quantified. In blood, RDV was rapidly and completely metabolized and was barely detected at 0.5 h, similar to RTP, while its metabolites RMP and RN exhibited higher blood levels with increased residence times. The area under the concentration versus time curve up to the last measured point in time (AUC0-t) values of RMP and RN were 4558 and 136,572 h∙nM, respectively. The maximum plasma concentration (Cmax) values of RMP and RN were 2896 nM and 35,819 nM, respectively. Moreover, RDV presented an extensive distribution, and the lung, liver and kidney showed high levels of the parent drug and metabolites. The metabolic stabilities of RDV and RMP were also evaluated using lung, liver, and kidney microsomes. RDV showed higher clearances in the liver and kidney than in the lung, with intrinsic clearance (CLint) values of 1740, 1253, and 127 mL/(min∙g microsomal protein), respectively.


Subject(s)
Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , Nucleosides/metabolism , Nucleotides/metabolism , Polyphosphates/metabolism , Tissue Distribution/physiology , Adenosine Monophosphate/pharmacokinetics , Adenosine Monophosphate/pharmacology , Alanine/pharmacokinetics , Alanine/pharmacology , Animals , Antiviral Agents/pharmacokinetics , Antiviral Agents/pharmacology , COVID-19/drug therapy , COVID-19/metabolism , Kidney/metabolism , Liver/metabolism , Lung/metabolism , Male , Mice , SARS-CoV-2/drug effects
10.
Acta Pharmacol Sin ; 41(9): 1167-1177, 2020 Sep.
Article in English | MEDLINE | ID: covidwho-691161

ABSTRACT

Human infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes coronavirus disease 2019 (COVID-19) and there is no cure currently. The 3CL protease (3CLpro) is a highly conserved protease which is indispensable for CoVs replication, and is a promising target for development of broad-spectrum antiviral drugs. In this study we investigated the anti-SARS-CoV-2 potential of Shuanghuanglian preparation, a Chinese traditional patent medicine with a long history for treating respiratory tract infection in China. We showed that either the oral liquid of Shuanghuanglian, the lyophilized powder of Shuanghuanglian for injection or their bioactive components dose-dependently inhibited SARS-CoV-2 3CLpro as well as the replication of SARS-CoV-2 in Vero E6 cells. Baicalin and baicalein, two ingredients of Shuanghuanglian, were characterized as the first noncovalent, nonpeptidomimetic inhibitors of SARS-CoV-2 3CLpro and exhibited potent antiviral activities in a cell-based system. Remarkably, the binding mode of baicalein with SARS-CoV-2 3CLpro determined by X-ray protein crystallography was distinctly different from those of known 3CLpro inhibitors. Baicalein was productively ensconced in the core of the substrate-binding pocket by interacting with two catalytic residues, the crucial S1/S2 subsites and the oxyanion loop, acting as a "shield" in front of the catalytic dyad to effectively prevent substrate access to the catalytic dyad within the active site. Overall, this study provides an example for exploring the in vitro potency of Chinese traditional patent medicines and effectively identifying bioactive ingredients toward a specific target, and gains evidence supporting the in vivo studies of Shuanghuanglian oral liquid as well as two natural products for COVID-19 treatment.


Subject(s)
Betacoronavirus/drug effects , Coronavirus Infections , Drugs, Chinese Herbal , Flavanones , Flavonoids , Pandemics , Pneumonia, Viral , Virus Replication/drug effects , Administration, Oral , Animals , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Betacoronavirus/physiology , COVID-19 , Chlorocebus aethiops , Coronavirus Infections/drug therapy , Coronavirus Infections/virology , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/pharmacology , Enzyme Assays , Flavanones/chemistry , Flavanones/pharmacokinetics , Flavonoids/chemistry , Flavonoids/pharmacokinetics , Humans , Pneumonia, Viral/drug therapy , Pneumonia, Viral/virology , SARS-CoV-2 , Vero Cells , Virus Replication/physiology
11.
Science ; 368(6498): 1499-1504, 2020 06 26.
Article in English | MEDLINE | ID: covidwho-154668

ABSTRACT

The pandemic of coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has become a global crisis. Replication of SARS-CoV-2 requires the viral RNA-dependent RNA polymerase (RdRp) enzyme, a target of the antiviral drug remdesivir. Here we report the cryo-electron microscopy structure of the SARS-CoV-2 RdRp, both in the apo form at 2.8-angstrom resolution and in complex with a 50-base template-primer RNA and remdesivir at 2.5-angstrom resolution. The complex structure reveals that the partial double-stranded RNA template is inserted into the central channel of the RdRp, where remdesivir is covalently incorporated into the primer strand at the first replicated base pair, and terminates chain elongation. Our structures provide insights into the mechanism of viral RNA replication and a rational template for drug design to combat the viral infection.


Subject(s)
Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , Antiviral Agents/chemistry , Betacoronavirus/enzymology , RNA-Dependent RNA Polymerase/antagonists & inhibitors , RNA-Dependent RNA Polymerase/chemistry , Viral Nonstructural Proteins/antagonists & inhibitors , Viral Nonstructural Proteins/chemistry , Adenosine Monophosphate/chemistry , Adenosine Monophosphate/metabolism , Adenosine Monophosphate/pharmacology , Alanine/chemistry , Alanine/metabolism , Alanine/pharmacology , Antiviral Agents/metabolism , Antiviral Agents/pharmacology , Betacoronavirus/drug effects , Betacoronavirus/physiology , Catalytic Domain , Coronavirus RNA-Dependent RNA Polymerase , Cryoelectron Microscopy , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/metabolism , Enzyme Inhibitors/pharmacology , Models, Molecular , Multiprotein Complexes/chemistry , Protein Conformation , RNA, Viral/chemistry , RNA, Viral/metabolism , RNA-Dependent RNA Polymerase/metabolism , SARS-CoV-2 , Viral Nonstructural Proteins/metabolism , Virus Replication
SELECTION OF CITATIONS
SEARCH DETAIL