ABSTRACT
Understanding persistence and evolution of B cell clones after COVID-19 infection and vaccination is crucial for predicting responses against emerging viral variants and optimizing vaccines. Here, we collected longitudinal samples from severe COVID-19 patients every third to seventh day during hospitalization and every third month after recovery. We profiled the antigen-specific immune cell dynamics by combining single cell RNA-Seq, Cellular Indexing of Transcriptomes and Epitopes by Sequencing (CITE)-Seq, B cell receptor (BCR)-Seq with oligo-tagged antigen baits. While the proportion of Spike Receptor Binding Domain-specific memory B cells (MBC) increased from 3 months after infection, the other Spike- and Nucleocapsid-specific B cells remained constant. All patients showed ongoing class switching and sustained affinity maturation of antigen specific cells, which was not significantly increased early after vaccine. B cell analysis revealed a polyclonal response with limited clonal expansion; nevertheless, some clones detected during hospitalization, as plasmablasts, persisted for up to one year, as MBC. Monoclonal antibodies derived from persistent B cell families increased their binding and neutralization breadth and started recognizing viral variants by 3 months after infection. Overall, our findings provide important insights into the clonal evolution and dynamics of antigen specific B cell responses in longitudinally sampled COVID-19 infected patients.
ABSTRACT
SARS-CoV-2 continues to pose a threat to human health as new variants emerge and thus a diverse vaccine pipeline is needed. We evaluated SARS-CoV-2 HexaPro spike protein formulated in Alhydrogel® (aluminium oxyhydroxide) in Syrian hamsters, using an accelerated two dose regimen (given 10 days apart) and a standard regimen (two doses given 21 days apart). Both regimens elicited spike- and RBD-specific IgG antibody responses of similar magnitude, but in vitro virus neutralization was low or undetectable. Despite this, the accelerated two dose regimen offered reduction in viral load and protected against lung pathology upon challenge with homologous SARS-CoV-2 virus (Wuhan-Hu-1). This highlights that vaccine-induced protection against SARS-CoV-2 disease can be obtained despite low neutralizing antibody levels and suggests that accelerated vaccine schedules may be used to confer rapid protection against SARS-CoV-2 disease.
Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Cricetinae , Humans , Aluminum Hydroxide , Mesocricetus , COVID-19/prevention & control , Vaccination , Antibodies, NeutralizingABSTRACT
Silver (Ag) is known to possess antimicrobial properties which is commonly attributed to soluble Ag ions. Here, we showed that Ag nanoparticles (NPs) potently inhibited SARS-CoV-2 infection using two different pseudovirus neutralization assays. We also evaluated a set of Ag nanoparticles of different sizes with varying surface properties, including polyvinylpyrrolidone (PVP)-coated and poly (ethylene glycol) (PEG)-modified Ag nanoparticles, and found that only the bare (unmodified) nanoparticles were able to prevent virus infection. For comparison, TiO2 nanoparticles failed to intercept the virus. Proteins and lipids may adsorb to nanoparticles forming a so-called bio-corona; however, Ag nanoparticles pre-incubated with pulmonary surfactant retained their ability to block virus infection in the present model. Furthermore, the secondary structure of the spike protein of SARS-CoV-2 was perturbed by the Ag nanoparticles, but not by the ionic control (AgNO3) nor by the TiO2 nanoparticles. Finally, Ag nanoparticles were shown to be non-cytotoxic towards the human lung epithelial cell line BEAS-2B and this was confirmed by using primary human nasal epithelial cells. These results further support that Ag nanoparticles may find use as anti-viral agents.
ABSTRACT
The human immunoglobulin heavy-chain (IGH) locus is exceptionally polymorphic, with high levels of allelic and structural variation. Thus, germline IGH genotypes are personal, which may influence responses to infection and vaccination. For an improved understanding of inter-individual differences in antibody responses, we isolated SARS-CoV-2 spike-specific monoclonal antibodies from convalescent health care workers, focusing on the IGHV1-69 gene, which has the highest level of allelic variation of all IGHV genes. The IGHV1-69∗20-using CAB-I47 antibody and two similar antibodies isolated from an independent donor were critically dependent on allele usage. Neutralization was retained when reverting the V region to the germline IGHV1-69∗20 allele but lost when reverting to other IGHV1-69 alleles. Structural data confirmed that two germline-encoded polymorphisms, R50 and F55, in the IGHV1-69 gene were required for high-affinity receptor-binding domain interaction. These results demonstrate that polymorphisms in IGH genes can influence the function of SARS-CoV-2 neutralizing antibodies.
Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Immunoglobulin Heavy Chains/genetics , COVID-19/genetics , Antibodies, Viral , Polymorphism, Genetic , Antibodies, Neutralizing , Germ CellsABSTRACT
BACKGROUND: Licensed vaccines against SARS-CoV-2 effectively protect against severe disease, but display incomplete protection against virus transmission. Mucosal vaccines providing immune responses in the upper airways are one strategy to protect against transmission. METHODS: We administered Spike HexaPro trimer formulated in a cationic liposomal adjuvant as a parenteral (subcutaneous - s.c.) prime - intranasal boost regimen to elicit airway mucosal immune responses and evaluated this in a Syrian hamster model of virus transmission. FINDINGS: Parenteral prime - intranasal boost elicited high-magnitude serum neutralizing antibody responses and IgA responses in the upper respiratory tract. The vaccine strategy protected against virus in the lower airways and lung pathology, but virus could still be detected in the upper airways. Despite this, the parenteral prime - intranasal booster vaccine effectively protected against onward SARS-CoV-2 transmission. INTERPRETATION: This study suggests that parenteral-prime mucosal boost is an effective strategy for protecting against SARS-CoV-2 infection and highlights that protection against virus transmission may be obtained despite incomplete clearance of virus from the upper respiratory tract. It should be noted that protection against onward transmission was not compared to standard parenteral prime-boost, which should be a focus for future studies. FUNDING: This work was primarily supported by the European Union Horizon 2020 research and innovation program under grant agreement no. 101003653.
Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines , Humans , Immunoglobulin AABSTRACT
Conventional approaches to isolate and characterize nanobodies are laborious. We combine phage display, multivariate enrichment, next-generation sequencing, and a streamlined screening strategy to identify numerous anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) nanobodies. We characterize their potency and specificity using neutralization assays and hydrogen/deuterium exchange mass spectrometry (HDX-MS). The most potent nanobodies bind to the receptor binding motif of the receptor binding domain (RBD), and we identify two exceptionally potent members of this category (with monomeric half-maximal inhibitory concentrations around 13 and 16 ng/ml). Other nanobodies bind to a more conserved epitope on the side of the RBD and are able to potently neutralize the SARS-CoV-2 founder virus (42 ng/ml), the Beta variant (B.1.351/501Y.V2) (35 ng/ml), and also cross-neutralize the more distantly related SARS-CoV-1 (0.46 µg/ml). The approach presented here is well suited for the screening of phage libraries to identify functional nanobodies for various biomedical and biochemical applications.
Subject(s)
COVID-19 , Camelids, New World , Single-Domain Antibodies , Animals , Antibodies, Monoclonal/chemistry , Antibodies, Viral , Camelids, New World/metabolism , Humans , Membrane Glycoproteins , Neutralization Tests , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Viral Envelope Proteins/metabolismABSTRACT
BACKGROUND: The SARS-CoV-2 omicron (B.1.1.529) variant, which was first identified in November, 2021, spread rapidly in many countries, with a spike protein highly diverged from previously known variants, and raised concerns that this variant might evade neutralising antibody responses. We therefore aimed to characterise the sensitivity of the omicron variant to neutralisation. METHODS: For this cross-sectional study, we cloned the sequence encoding the omicron spike protein from a diagnostic sample to establish an omicron pseudotyped virus neutralisation assay. We quantified the neutralising antibody ID50 (the reciprocal dilution that produces 50% inhibition) against the omicron spike protein, and the fold-change in ID50 relative to the spike of wild-type SARS-CoV-2 (ie, the pandemic founder variant), for one convalescent reference plasma pool (WHO International Standard for anti-SARS-CoV-2 immunoglobulin [20/136]), three reference serum pools from vaccinated individuals, and two cohorts from Stockholm, Sweden: one comprising previously infected hospital workers (17 sampled in November, 2021, after vaccine rollout and nine in June or July, 2020, before vaccination) and one comprising serum from 40 randomly sampled blood donors donated during week 48 (Nov 29-Dec 5) of 2021. Furthermore, we assessed the neutralisation of omicron by five clinically relevant monoclonal antibodies (mAbs). FINDINGS: Neutralising antibody responses in reference sample pools sampled shortly after infection or vaccination were substantially less potent against the omicron variant than against wild-type SARS-CoV-2 (seven-fold to 42-fold reduction in ID50 titres). Similarly, for sera obtained before vaccination in 2020 from a cohort of convalescent hospital workers, neutralisation of the omicron variant was low to undetectable (all ID50 titres <20). However, in serum samples obtained in 2021 from two cohorts in Stockholm, substantial cross-neutralisation of the omicron variant was observed. Sera from 17 hospital workers after infection and subsequent vaccination had a reduction in average potency of only five-fold relative to wild-type SARS-CoV-2 (geometric mean ID50 titre 495 vs 105), and two donors had no reduction in potency. A similar pattern was observed in randomly sampled blood donors (n=40), who had an eight-fold reduction in average potency against the omicron variant compared with wild-type SARS-CoV-2 (geometric mean ID50 titre 369 vs 45). We found that the omicron variant was resistant to neutralisation (50% inhibitory concentration [IC50] >10 µg/mL) by mAbs casirivimab (REGN-10933), imdevimab (REGN-10987), etesevimab (Ly-CoV016), and bamlanivimab (Ly-CoV555), which form part of antibody combinations used in the clinic to treat COVID-19. However, S309, the parent of sotrovimab, retained most of its activity, with only an approximately two-fold reduction in potency against the omicron variant compared with ancestral D614G SARS-CoV-2 (IC50 0·1-0·2 µg/mL). INTERPRETATION: These data highlight the extensive, but incomplete, evasion of neutralising antibody responses by the omicron variant, and suggest that boosting with licensed vaccines might be sufficient to raise neutralising antibody titres to protective levels. FUNDING: European Union Horizon 2020 research and innovation programme, European and Developing Countries Clinical Trials Partnership, SciLifeLab, and the Erling-Persson Foundation.
Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Monoclonal , Antibodies, Monoclonal, Humanized , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/epidemiology , COVID-19 Vaccines , Cross-Sectional Studies , Humans , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/geneticsABSTRACT
Objectives: Population-level measures of seropositivity are critical for understanding the epidemiology of an emerging pathogen, yet most antibody tests apply a strict cutoff for seropositivity that is not learnt in a data-driven manner, leading to uncertainty when classifying low-titer responses. To improve upon this, we evaluated cutoff-independent methods for their ability to assign likelihood of SARS-CoV-2 seropositivity to individual samples. Methods: Using robust ELISAs based on SARS-CoV-2 spike (S) and the receptor-binding domain (RBD), we profiled antibody responses in a group of SARS-CoV-2 PCR+ individuals (n = 138). Using these data, we trained probabilistic learners to assign likelihood of seropositivity to test samples of unknown serostatus (n = 5100), identifying a support vector machines-linear discriminant analysis learner (SVM-LDA) suited for this purpose. Results: In the training data from confirmed ancestral SARS-CoV-2 infections, 99% of participants had detectable anti-S and -RBD IgG in the circulation, with titers differing > 1000-fold between persons. In data of otherwise healthy individuals, 7.2% (n = 367) of samples were of uncertain serostatus, with values in the range of 3-6SD from the mean of pre-pandemic negative controls (n = 595). In contrast, SVM-LDA classified 6.4% (n = 328) of test samples as having a high likelihood (> 99% chance) of past infection, 4.5% (n = 230) to have a 50-99% likelihood, and 4.0% (n = 203) to have a 10-49% likelihood. As different probabilistic approaches were more consistent with each other than conventional SD-based methods, such tools allow for more statistically-sound seropositivity estimates in large cohorts. Conclusion: Probabilistic antibody testing frameworks can improve seropositivity estimates in populations with large titer variability.
ABSTRACT
Antibodies binding to the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike have therapeutic promise, but emerging variants show the potential for virus escape. This emphasizes the need for therapeutic molecules with distinct and novel neutralization mechanisms. Here we describe the isolation of a nanobody that interacts simultaneously with two RBDs from different spike trimers of SARS-CoV-2, rapidly inducing the formation of spike trimer-dimers leading to the loss of their ability to attach to the host cell receptor, ACE2. We show that this nanobody potently neutralizes SARS-CoV-2, including the beta and delta variants, and cross-neutralizes SARS-CoV. Furthermore, we demonstrate the therapeutic potential of the nanobody against SARS-CoV-2 and the beta variant in a human ACE2 transgenic mouse model. This naturally elicited bispecific monomeric nanobody establishes an uncommon strategy for potent inactivation of viral antigens and represents a promising antiviral against emerging SARS-CoV-2 variants.
Subject(s)
Antibodies, Bispecific/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/immunology , SARS-CoV-2/immunology , Single-Domain Antibodies/immunology , Spike Glycoprotein, Coronavirus/immunology , Animals , Antibodies, Bispecific/metabolism , COVID-19/virology , Chlorocebus aethiops , Cryoelectron Microscopy , HEK293 Cells , Humans , Mice, Transgenic , Neutralization Tests/methods , Protein Binding , Protein Conformation , Protein Multimerization/immunology , SARS-CoV-2/metabolism , SARS-CoV-2/physiology , Single-Domain Antibodies/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism , Vero CellsABSTRACT
Characterization of COVID-19 antibodies has largely focused on memory B cells; however, it is the antibody-secreting plasma cells that are directly responsible for the production of serum antibodies, which play a critical role in resolving SARS-CoV-2 infection. Little is known about the specificity of plasma cells, largely because plasma cells lack surface antibody expression, thereby complicating their screening. Here, we describe a technology pipeline that integrates single-cell antibody repertoire sequencing and mammalian display to interrogate the specificity of plasma cells from 16 convalescent patients. Single-cell sequencing allows us to profile antibody repertoire features and identify expanded clonal lineages. Mammalian display screening is used to reveal that 43 antibodies (of 132 candidates) derived from expanded plasma cell lineages are specific to SARS-CoV-2 antigens, including antibodies with high affinity to the SARS-CoV-2 receptor-binding domain (RBD) that exhibit potent neutralization and broad binding to the RBD of SARS-CoV-2 variants (of concern/interest).
Subject(s)
Antibodies, Neutralizing/isolation & purification , Plasma Cells/metabolism , SARS-CoV-2/immunology , Single-Cell Analysis/methods , Animals , Antibodies, Viral/isolation & purification , COVID-19/immunology , COVID-19/prevention & control , Cells, Cultured , Cohort Studies , Gene Library , HEK293 Cells , High-Throughput Nucleotide Sequencing/methods , Humans , Mammals , Neutralization Tests , Peptide Library , Plasma Cells/chemistryABSTRACT
Severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) variants of concern (VOCs) with resistance to neutralizing antibodies are threatening to undermine vaccine efficacy. Vaccination and infection have led to widespread humoral immunity against the pandemic founder (Wu-Hu-1). Against this background, it is critical to assess the outcomes of subsequent immunization with variant antigens. It is not yet clear whether heterotypic boosts would be compromised by original antigenic sin, where pre-existing responses to a prior variant dampen responses to a new one, or whether the memory B cell repertoire would bridge the gap between Wu-Hu-1 and VOCs. We show, in macaques immunized with Wu-Hu-1 spike, that a single dose of adjuvanted beta variant receptor binding domain (RBD) protein broadens neutralizing antibody responses to heterologous VOCs. Passive transfer of plasma sampled after Wu-Hu-1 spike immunization only partially protects K18-hACE2 mice from lethal challenge with a beta variant isolate, whereas plasma sampled following heterotypic RBD boost protects completely against disease.
Subject(s)
Antibodies, Neutralizing/blood , Antibodies, Viral/blood , COVID-19 Vaccines , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Animals , COVID-19 , Female , HEK293 Cells , Humans , Macaca mulatta/immunology , Male , Mice , Models, Animal , SARS-CoV-2/metabolismABSTRACT
The outbreak and spread of SARS-CoV-2 (severe acute respiratory syndrome-coronavirus-2) is a current global health emergency, and effective prophylactic vaccines are needed urgently. The spike glycoprotein of SARS-CoV-2 mediates entry into host cells, and thus is the target of neutralizing antibodies. Here, we show that adjuvanted protein immunization with soluble SARS-CoV-2 spike trimers, stabilized in prefusion conformation, results in potent antibody responses in mice and rhesus macaques, with neutralizing antibody titers exceeding those typically measured in SARS-CoV-2 seropositive humans by more than one order of magnitude. Neutralizing antibody responses were observed after a single dose, with exceptionally high titers achieved after boosting. A follow-up to monitor the waning of the neutralizing antibody responses in rhesus macaques demonstrated durable responses that were maintained at high and stable levels at least 4 months after boosting. These data support the development of adjuvanted SARS-CoV-2 prefusion-stabilized spike protein subunit vaccines.
Subject(s)
Antibodies, Neutralizing/blood , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/immunology , Animals , Antibodies, Viral/blood , COVID-19/prevention & control , COVID-19/veterinary , COVID-19/virology , COVID-19 Vaccines/immunology , Female , Macaca mulatta , Male , Memory B Cells/immunology , Memory B Cells/metabolism , Mice , Mice, Inbred C57BL , Protein Domains/immunology , Protein Subunits/immunology , SARS-CoV-2/isolation & purification , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism , Time Factors , VaccinationABSTRACT
The outbreak of the SARS-CoV-2 virus and its rapid spread into a global pandemic made the urgent development of scalable vaccines to prevent coronavirus disease (COVID-19) a global health and economic imperative. Here, we characterized and compared the immunogenicity of two alphavirus-based DNA-launched self-replicating (DREP) vaccine candidates encoding either SARS-CoV-2 spike glycoprotein (DREP-S) or a spike ectodomain trimer stabilized in prefusion conformation (DREP-Secto). We observed that the two DREP constructs were immunogenic in mice inducing both binding and neutralizing antibodies as well as T cell responses. Interestingly, the DREP coding for the unmodified spike turned out to be more potent vaccine candidate, eliciting high titers of SARS-CoV-2 specific IgG antibodies that were able to efficiently neutralize pseudotyped virus after a single immunization. In addition, both DREP constructs were able to efficiently prime responses that could be boosted with a heterologous spike protein immunization. These data provide important novel insights into SARS-CoV-2 vaccine design using a rapid response DNA vaccine platform. Moreover, they encourage the use of mixed vaccine modalities as a strategy to combat SARS-CoV-2.
Subject(s)
COVID-19 Vaccines/immunology , COVID-19/prevention & control , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Vaccines, DNA/immunology , Animals , Female , HEK293 Cells , Humans , Mice , Mice, Inbred C57BLABSTRACT
BACKGROUND: SARS-CoV-2 has caused a global pandemic, infecting millions of people. A safe, effective vaccine is urgently needed and remains a global health priority. Subunit vaccines are used successfully against other viruses when administered in the presence of an effective adjuvant. METHODS: We evaluated three different clinically tested adjuvant systems in combination with the SARS-CoV-2 pre-fusion stabilized (S-2P) spike protein using a one-dose regimen in mice. FINDINGS: Whilst spike protein alone was only weakly immunogenic, the addition of either Aluminum hydroxide, a squalene based oil-in-water emulsion system (SE) or a cationic liposome-based adjuvant significantly enhanced antibody responses against the spike receptor binding domain (RBD). Kinetics of antibody responses differed, with SE providing the most rapid response. Neutralizing antibodies developed after a single immunization in all adjuvanted groups with ID50 titers ranging from 86-4063. Spike-specific CD4 T helper responses were also elicited, comprising mainly of IFN-γ and IL-17 producing cells in the cationic liposome adjuvanted group, and more IL-5- and IL-10-secreting cells in the AH group. INTERPRETATION: These results demonstrate that adjuvanted spike protein subunit vaccine is a viable strategy for rapidly eliciting SARS-CoV-2 neutralizing antibodies and CD4 T cell responses of various qualities depending on the adjuvant used, which can be explored in further vaccine development against COVID-19. FUNDING: This work was supported by the European Union Horizon 2020 research and innovation program under grant agreement no. 101003653.
Subject(s)
Antibodies, Neutralizing/metabolism , Antibodies, Viral/metabolism , CD4-Positive T-Lymphocytes/immunology , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/immunology , Adjuvants, Immunologic/administration & dosage , Adjuvants, Immunologic/chemistry , Aluminum Hydroxide/chemistry , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , CD4-Positive T-Lymphocytes/cytology , CD4-Positive T-Lymphocytes/metabolism , COVID-19/pathology , COVID-19/virology , Female , Immunization , Interferon-gamma/metabolism , Interleukin-17/metabolism , Liposomes/chemistry , Mice , Mice, Inbred C57BL , SARS-CoV-2/isolation & purification , Spike Glycoprotein, Coronavirus/chemistry , Squalene/chemistry , Vaccines, Subunit/immunologyABSTRACT
The coronavirus SARS-CoV-2 is the cause of the ongoing COVID-19 pandemic. Therapeutic neutralizing antibodies constitute a key short-to-medium term approach to tackle COVID-19. However, traditional antibody production is hampered by long development times and costly production. Here, we report the rapid isolation and characterization of nanobodies from a synthetic library, known as sybodies (Sb), that target the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein. Several binders with low nanomolar affinities and efficient neutralization activity were identified of which Sb23 displayed high affinity and neutralized pseudovirus with an IC50 of 0.6 µg/ml. A cryo-EM structure of the spike bound to Sb23 showed that Sb23 binds competitively in the ACE2 binding site. Furthermore, the cryo-EM reconstruction revealed an unusual conformation of the spike where two RBDs are in the 'up' ACE2-binding conformation. The combined approach represents an alternative, fast workflow to select binders with neutralizing activity against newly emerging viruses.
Subject(s)
Betacoronavirus/immunology , Coronavirus Infections/prevention & control , Pandemics/prevention & control , Peptidyl-Dipeptidase A/metabolism , Pneumonia, Viral/prevention & control , Single-Domain Antibodies/immunology , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/metabolism , Angiotensin-Converting Enzyme 2 , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19 , Cryoelectron Microscopy , Humans , Neutralization Tests , Protein Binding , Protein Conformation , Protein Domains/immunology , Receptors, Virus/metabolism , SARS-CoV-2ABSTRACT
SARS-CoV-2 enters host cells through an interaction between the spike glycoprotein and the angiotensin converting enzyme 2 (ACE2) receptor. Directly preventing this interaction presents an attractive possibility for suppressing SARS-CoV-2 replication. Here, we report the isolation and characterization of an alpaca-derived single domain antibody fragment, Ty1, that specifically targets the receptor binding domain (RBD) of the SARS-CoV-2 spike, directly preventing ACE2 engagement. Ty1 binds the RBD with high affinity, occluding ACE2. A cryo-electron microscopy structure of the bound complex at 2.9 Å resolution reveals that Ty1 binds to an epitope on the RBD accessible in both the 'up' and 'down' conformations, sterically hindering RBD-ACE2 binding. While fusion to an Fc domain renders Ty1 extremely potent, Ty1 neutralizes SARS-CoV-2 spike pseudovirus as a 12.8 kDa nanobody, which can be expressed in high quantities in bacteria, presenting opportunities for manufacturing at scale. Ty1 is therefore an excellent candidate as an intervention against COVID-19.