Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
Journal of chemical education ; 2023.
Article in English | EuropePMC | ID: covidwho-2327381

ABSTRACT

Owing to the global spread of the coronavirus disease 2019 (COVID-19), education has shifted to distance online learning, whereas some face-to-face courses have been resumed with the improvement of the outbreak prevention and management situation, including a laboratory course for senior undergraduate students in chemical biology. Here, we present an innovative chemical biology experiment covering COVID-19 topics, which was created for third-year undergraduates. The basic principles of two nucleic-acid- and antigen-based diagnostic techniques for SARS-CoV-2 are demonstrated in detail. These experiments are designed to provide students with comprehensive knowledge of COVID-19 and related diagnoses in daily life. Crucially, the biosafety of this experimental manipulation was ensured by using artificial nucleic acids and recombinant protein. Furthermore, an interactive hybrid online-facing teaching model was designed to cover the key mechanism regarding PCR and serological tests of COVID-19. Finally, a satisfactory evaluation was obtained through a questionnaire, and simultaneously, reasonable improvements to the course design were suggested. The proposed curriculum provides all the necessary information for other instructors to create new courses supported by research.

2.
Biosens Bioelectron ; 222: 114944, 2022 Nov 30.
Article in English | MEDLINE | ID: covidwho-2321919

ABSTRACT

The effective analysis of the basic structure and functional information of bioparticles are of great significance for the early diagnosis of diseases. The synergism between microfluidics and particle manipulation/detection technologies offers enhanced system integration capability and test accuracy for the detection of various bioparticles. Most microfluidic detection platforms are based on optical strategies such as fluorescence, absorbance, and image recognition. Although optical microfluidic platforms have proven their capabilities in the practical clinical detection of bioparticles, shortcomings such as expensive components and whole bulky devices have limited their practicality in the development of point-of-care testing (POCT) systems to be used in remote and underdeveloped areas. Therefore, there is an urgent need to develop cost-effective non-optical microfluidic platforms for bioparticle detection that can act as alternatives to optical counterparts. In this review, we first briefly summarise passive and active methods for bioparticle manipulation in microfluidics. Then, we survey the latest progress in non-optical microfluidic strategies based on electrical, magnetic, and acoustic techniques for bioparticle detection. Finally, a perspective is offered, clarifying challenges faced by current non-optical platforms in developing practical POCT devices and clinical applications.

3.
Cell Host Microbe ; 2022 Oct 18.
Article in English | MEDLINE | ID: covidwho-2237104

ABSTRACT

SARS-CoV-2 spread in humans results in continuous emergence of new variants, highlighting the need for vaccines with broad-spectrum antigenic coverage. Using inter-lineage chimera and mutation-patch strategies, we engineered a recombinant monomeric spike variant (STFK1628x) that contains key regions and residues across multiple SAR-CoV-2 variants. STFK1628x demonstrated high immunogenicity and mutually complementary antigenicity to its prototypic form (STFK). In hamsters, a bivalent vaccine composed of STFK and STFK1628x elicited high titers of broad-spectrum neutralizing antibodies to 19 circulating SARS-CoV-2 variants, including Omicron sublineages BA.1, BA.1.1, BA.2, BA.2.12.1, BA.2.75, and BA.4/5. Furthermore, this vaccine conferred robust protection against intranasal challenges by either SARS-CoV-2 ancestral strain or immune-evasive Beta and Omicron BA.1. Strikingly, vaccination with the bivalent vaccine in hamsters effectively blocked within-cage virus transmission of ancestral SARS-CoV-2, Beta variant, and Omicron BA.1 to unvaccinated sentinels. Thus, our study provided insight and antigen candidates for the development of next-generation COVID-19 vaccines.

4.
Infect Dis Poverty ; 11(1): 114, 2022 Nov 24.
Article in English | MEDLINE | ID: covidwho-2139424

ABSTRACT

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron (B.1.1.529) variant is highly transmissible with potential immune escape. Hence, control measures are continuously being optimized to guard against large-scale coronavirus disease 2019 (COVID-19) outbreaks. This study aimed to explore the relationship between the intensity of control measures in response to different SARS-CoV-2 variants and the degree of outbreak control at city level. METHODS: A retrospective study was conducted in 49 cities with COVID-19 outbreaks between January 2020 and June 2022. Epidemiological data on COVID-19 were extracted from the National Health Commission, People's Republic of China, and the population flow data were sourced from the Baidu migration data provided by the Baidu platform. Outbreak control was quantified by calculating the degree of infection growth and the time-varying reproduction number ([Formula: see text]). The intensity of the outbreak response was quantified by calculating the reduction in population mobility during the outbreak period. Correlation and regression analyses of the intensity of the control measures and the degree of outbreak control for the Omicron variant and non-Omicron mutants were conducted, respectively. RESULTS: Overall, 65 outbreaks occurred in 49 cities in China from January 2020 to June 2022. Of them, 66.2% were Omicron outbreaks and 33.8% were non-Omicron outbreaks. The intensity of the control measures was positively correlated with the degree of outbreak control (r = 0.351, P = 0.03). The degree of reduction in population mobility was negatively correlated with the Rt value (r = - 0.612, P < 0.01). Therefore, under the same control measure intensity, the number of new daily Omicron infections was 6.04 times higher than those attributed to non-Omicron variants, and the Rt value of Omicron outbreaks was 2.6 times higher than that of non-Omicron variants. In addition, the duration of non-Omicron variant outbreaks was shorter than that of the outbreaks caused by the Omicron variant (23.0 ± 10.7, 32.9 ± 16.3, t = 2.243, P = 0.031). CONCLUSIONS: Greater intensity of control measures was associated with more effective outbreak control. Thus, in response to the Omicron variant, the management to restrict population movement should be used to control its spread quickly, especially in the case of community transmission occurs widely. Faster than is needed for non-Omicron variants, and decisive control measures should be imposed and dynamically adjusted in accordance with the evolving epidemic situation.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Cities/epidemiology , COVID-19/epidemiology , Retrospective Studies , Disease Outbreaks/prevention & control
5.
J Clin Med ; 11(19)2022 Sep 27.
Article in English | MEDLINE | ID: covidwho-2066180

ABSTRACT

The National Heart, Lung, and Blood Institute (NHLBI) convened a workshop of international experts to discuss new research opportunities for the prevention, detection, and intervention of myocarditis in May 2021. These experts reviewed the current state of science and identified key gaps and opportunities in basic, diagnostic, translational, and therapeutic frontiers to guide future research in myocarditis. In addition to addressing community-acquired myocarditis, the workshop also focused on emerging causes of myocarditis including immune checkpoint inhibitors and SARS-CoV-2 related myocardial injuries and considered the use of systems biology and artificial intelligence methodologies to define workflows to identify novel mechanisms of disease and new therapeutic targets. A new priority is the investigation of the relationship between social determinants of health (SDoH), including race and economic status, and inflammatory response and outcomes in myocarditis. The result is a proposal for the reclassification of myocarditis that integrates the latest knowledge of immunological pathogenesis to refine estimates of prognosis and target pathway-specific treatments.

7.
Complement Ther Clin Pract ; 48: 101600, 2022 Aug.
Article in English | MEDLINE | ID: covidwho-1821202

ABSTRACT

BACKGROUND: COVID-19 has posed an unprecedented threat to public health and remains a critical challenge for medical staff, especially those who have been fighting against the virus in Wuhan, China. Limited data have been reported regarding the psychological status of these medical staff members. Therefore, we conducted this study to explore the mental health status of medical staff and the efficacy of brief mindfulness meditation (BMM) in improving their mental health. METHODS: A survey was conducted between April 18 and May 3, 2020. Upon completing the pre-test, participants in the treatment group received a 15-min BMM intervention every day at 8 p.m. Post-test questionnaires were completed after 16 days of therapy. The questionnaire comprised demographic data and psychological measurement scales. The levels of pre and post-test depression, anxiety, stress, and insomnia were assessed using the 9-item Patient Health Questionnaire, 7-item Generalized Anxiety Disorder Scale, Perceived Stress Scale, and Athens Insomnia Scale, respectively. RESULTS: A total of 134 completed questionnaires were received. Of the medical staff, 6.7%, 1.5%, and 26.7% reported symptoms of depression, anxiety, and insomnia, respectively. Public officials from military hospitals reported experiencing greater pressure than private officials (t = 2.39, p = 0.018, d = 0.50). Additionally, BMM treatment appeared to effectively alleviate insomnia (t = 2.27, p = 0.027, d = 0.28). CONCLUSIONS: The medical staff suffered negative psychological effects during the COVID-19 pandemic. BMM interventions are advantageous in supporting the mental health of medical staff.


Subject(s)
COVID-19 , Meditation , Mindfulness , Sleep Initiation and Maintenance Disorders , Anxiety/psychology , Anxiety/therapy , COVID-19/epidemiology , COVID-19/prevention & control , Depression/therapy , Humans , Medical Staff , Pandemics
8.
Cell Rep ; 38(12): 110558, 2022 03 22.
Article in English | MEDLINE | ID: covidwho-1797096

ABSTRACT

Mutations in the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike receptor-binding domain (RBD) may alter viral host tropism and affect the activities of neutralizing antibodies. Here, we investigated 153 RBD mutants and 11 globally circulating variants of concern (VOCs) and variants of interest (VOIs) (including Omicron) for their antigenic changes and cross-species tropism in cells expressing 18 ACE2 orthologs. Several RBD mutations strengthened viral infectivity in cells expressing ACE2 orthologs of non-human animals, particularly those less susceptible to the ancestral strain. The mutations surrounding amino acids (aas) 439-448 and aa 484 are more likely to cause neutralization resistance. Strikingly, enhanced cross-species infection potential in the mouse and ferret, instead of the neutralization-escape scores of the mutations, account for the positive correlation with the cumulative prevalence of mutations in humans. These findings present insights for potential drivers of circulating SARS-CoV-2 variants and provide informative parameters for tracking and forecasting spreading mutations.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Ferrets , Humans , Membrane Glycoproteins/metabolism , Mice , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus , Tropism , Viral Envelope Proteins
9.
Cell reports ; 2022.
Article in English | EuropePMC | ID: covidwho-1728589

ABSTRACT

Zhang et al. show in vitro cross-species infectivity and neutralization-escape characteristics of 153 SARS-CoV-2 RBD mutants and 11 globally circulating VOC/VOI variants. They reveal an association between enhanced cross-species infection potential and the current cumulative prevalence of mutations, which can inform surveillance and forecasting of SARS-CoV-2 spike mutations.

10.
Frontiers in psychology ; 12, 2021.
Article in English | EuropePMC | ID: covidwho-1678966

ABSTRACT

In 2020, the sudden outbreak of coronavirus disease 2019 (COVID-19) has had a great impact on the health and life of people all over the world, and the sports industry is facing unprecedented challenges due to its participation and strong clustering. Based on the questionnaire survey, literature analysis, and other research methods, this study introduces the stimulus-organism-response (SOR) theory, takes the sports and consumption of Kunshan citizens as the research subject, and draws lessons from the structural equation model (SEM) to build a theoretical model of sports consumption characteristics and future consumption willingness. The results of empirical analysis show that physical sports consumption has been greatly affected by the epidemic, but because people realize the importance of sports, the willingness of residents to consume sports increases, and the venue and other factors affect the ornamental and participating sports consumption willingness decreases. At the same time, the restrictive factors, such as lower educational background, increased age, and lack of time, make the sports consumption willingness of this characteristic group significantly lower than that of other citizens. This study puts forward some suggestions for relevant government departments to improve the sports consumption willingness of citizens. In order to expand the development prospect of sports industry from a long-term perspective, it can provide reference for the development of sports consumption.

11.
Sci Transl Med ; 13(606)2021 08 11.
Article in English | MEDLINE | ID: covidwho-1319371

ABSTRACT

Multiple safe and effective vaccines that elicit immune responses against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are necessary to respond to the ongoing coronavirus disease 2019 (COVID-19) pandemic. Here, we developed a protein subunit vaccine composed of spike ectodomain protein (StriFK) plus a nitrogen bisphosphonate-modified zinc-aluminum hybrid adjuvant (FH002C). StriFK-FH002C generated substantially higher neutralizing antibody titers in mice, hamsters, and cynomolgus monkeys than those observed in plasma isolated from COVID-19 convalescent individuals. StriFK-FH002C also induced both TH1- and TH2-polarized helper T cell responses in mice. In hamsters, StriFK-FH002C immunization protected animals against SARS-CoV-2 challenge, as shown by the absence of virus-induced weight loss, fewer symptoms of disease, and reduced lung pathology. Vaccination of hamsters with StriFK-FH002C also reduced within-cage virus transmission to unvaccinated, cohoused hamsters. In summary, StriFK-FH002C represents an effective, protein subunit-based SARS-CoV-2 vaccine candidate.


Subject(s)
COVID-19 , Animals , Antibodies, Neutralizing , Antibodies, Viral , COVID-19 Vaccines , Cricetinae , Humans , Mice , Protein Subunits , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/genetics
12.
Small Methods ; 5(2): 2001031, 2021 Feb 15.
Article in English | MEDLINE | ID: covidwho-986422

ABSTRACT

The ongoing corona virus disease 2019 (COVID-19) pandemic, caused by SARS-CoV-2 infection, has resulted in hundreds of thousands of deaths. Cellular entry of SARS-CoV-2, which is mediated by the viral spike protein and ACE2 receptor, is an essential target for the development of vaccines, therapeutic antibodies, and drugs. Using a mammalian cell expression system, a genetically engineered sensor of fluorescent protein (Gamillus)-fused SARS-CoV-2 spike trimer (STG) to probe the viral entry process is developed. In ACE2-expressing cells, it is found that the STG probe has excellent performance in the live-cell visualization of receptor binding, cellular uptake, and intracellular trafficking of SARS-CoV-2 under virus-free conditions. The new system allows quantitative analyses of the inhibition potentials and detailed influence of COVID-19-convalescent human plasmas, neutralizing antibodies and compounds, providing a versatile tool for high-throughput screening and phenotypic characterization of SARS-CoV-2 entry inhibitors. This approach may also be adapted to develop a viral entry visualization system for other viruses.

13.
Emerg Microbes Infect ; 9(1): 2105-2113, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-913100

ABSTRACT

The global pandemic of coronavirus disease 2019 (COVID-19) is a disaster for human society. A convenient and reliable neutralization assay is very important for the development of vaccines and novel drugs. In this study, a G protein-deficient vesicular stomatitis virus (VSVdG) bearing a truncated spike protein (S with C-terminal 18 amino acid truncation) was compared to that bearing the full-length spike protein of SARS-CoV-2 and showed much higher efficiency. A neutralization assay was established based on VSV-SARS-CoV-2-Sdel18 pseudovirus and hACE2-overexpressing BHK21 cells (BHK21-hACE2 cells). The experimental results can be obtained by automatically counting the number of EGFP-positive cells at 12 h after infection, making the assay convenient and high-throughput. The serum neutralizing titer measured by the VSV-SARS-CoV-2-Sdel18 pseudovirus assay has a good correlation with that measured by the wild type SARS-CoV-2 assay. Seven neutralizing monoclonal antibodies targeting the receptor binding domain (RBD) of the SARS-CoV-2 S protein were obtained. This efficient and reliable pseudovirus assay model could facilitate the development of new drugs and vaccines.


Subject(s)
Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Betacoronavirus/immunology , Coronavirus Infections/diagnosis , Neutralization Tests/methods , Pneumonia, Viral/diagnosis , Spike Glycoprotein, Coronavirus/immunology , Animals , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19 , Cell Line , Chlorocebus aethiops , Cricetinae , Pandemics , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/genetics , Vero Cells , Vesicular stomatitis Indiana virus/genetics , Vesicular stomatitis Indiana virus/immunology
14.
Math Biosci Eng ; 17(4): 2936-2949, 2020 03 30.
Article in English | MEDLINE | ID: covidwho-806454

ABSTRACT

The coronavirus disease 2019 (COVID-2019), a newly emerging disease in China, posed a public health emergency of China. Wuhan is the most serious affected city. Some measures have been taken to control the transmission of COVID-19. From Jan. 23rd, 2020, gradually increasing medical resources (such as health workforce, protective clothing, essential medicines) were sent to Wuhan from other provinces, and the government has established the hospitals to quarantine and treat infected individuals. Under the condition of sufficient medical resources in Wuhan, late-stage of epidemic showed a downward trend. Assessing the effectiveness of medical resources is of great significance for the future response to similar disease. Based on the transmission mechanisms of COVID-19 and epidemic characteristics of Wuhan, by using time-dependent rates for some parameters, we establish a dynamical model to reflect the changes of medical resources on transmission of COVID-19 in Wuhan. Our model is applied to simulate the reported data on cumulative and new confirmed cases in Wuhan from Jan. 23rd to Mar. 6th, 2020. We estimate the basic reproduction number R0 = 2.71, which determines whether the disease will eventually die out or not under the absence of effective control measures. Moreover, we calculate the effective daily reproduction ratio Re(t), which is used to measure the 'daily reproduction number'. We obtain that Re(t) drops less than 1 since Feb. 8th. Our results show that delayed opening the 'Fire God Hill' hospital will greatly increase the magnitude of the outbreak. This shows that the government's timely establishment of hospitals and effective quarantine via quick detection prevent a larger outbreak.


Subject(s)
Betacoronavirus , Coronavirus Infections/transmission , Models, Biological , Pandemics , Pneumonia, Viral/transmission , Basic Reproduction Number/statistics & numerical data , COVID-19 , China/epidemiology , Computer Simulation , Coronavirus Infections/epidemiology , Coronavirus Infections/prevention & control , Hospital Design and Construction , Hospitals , Humans , Mathematical Concepts , Pandemics/prevention & control , Pandemics/statistics & numerical data , Pneumonia, Viral/epidemiology , Pneumonia, Viral/prevention & control , Quarantine/statistics & numerical data , SARS-CoV-2 , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL