Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Crit Care ; 26(1): 141, 2022 05 17.
Article in English | MEDLINE | ID: covidwho-1846858

ABSTRACT

BACKGROUND: The role of neuromuscular blocking agents (NMBAs) in coronavirus disease 2019 (COVID-19) acute respiratory distress syndrome (ARDS) is not fully elucidated. Therefore, we aimed to investigate in COVID-19 patients with moderate-to-severe ARDS the impact of early use of NMBAs on 90-day mortality, through propensity score (PS) matching analysis. METHODS: We analyzed a convenience sample of patients with COVID-19 and moderate-to-severe ARDS, admitted to 244 intensive care units within the COVID-19 Critical Care Consortium, from February 1, 2020, through October 31, 2021. Patients undergoing at least 2 days and up to 3 consecutive days of NMBAs (NMBA treatment), within 48 h from commencement of IMV were compared with subjects who did not receive NMBAs or only upon commencement of IMV (control). The primary objective in the PS-matched cohort was comparison between groups in 90-day in-hospital mortality, assessed through Cox proportional hazard modeling. Secondary objectives were comparisons in the numbers of ventilator-free days (VFD) between day 1 and day 28 and between day 1 and 90 through competing risk regression. RESULTS: Data from 1953 patients were included. After propensity score matching, 210 cases from each group were well matched. In the PS-matched cohort, mean (± SD) age was 60.3 ± 13.2 years and 296 (70.5%) were male and the most common comorbidities were hypertension (56.9%), obesity (41.1%), and diabetes (30.0%). The unadjusted hazard ratio (HR) for death at 90 days in the NMBA treatment vs control group was 1.12 (95% CI 0.79, 1.59, p = 0.534). After adjustment for smoking habit and critical therapeutic covariates, the HR was 1.07 (95% CI 0.72, 1.61, p = 0.729). At 28 days, VFD were 16 (IQR 0-25) and 25 (IQR 7-26) in the NMBA treatment and control groups, respectively (sub-hazard ratio 0.82, 95% CI 0.67, 1.00, p = 0.055). At 90 days, VFD were 77 (IQR 0-87) and 87 (IQR 0-88) (sub-hazard ratio 0.86 (95% CI 0.69, 1.07; p = 0.177). CONCLUSIONS: In patients with COVID-19 and moderate-to-severe ARDS, short course of NMBA treatment, applied early, did not significantly improve 90-day mortality and VFD. In the absence of definitive data from clinical trials, NMBAs should be indicated cautiously in this setting.


Subject(s)
COVID-19 , Neuromuscular Blocking Agents , Respiratory Distress Syndrome , Aged , COVID-19/drug therapy , Female , Humans , Intensive Care Units , Male , Middle Aged , Neuromuscular Blocking Agents/therapeutic use , Propensity Score , Respiration, Artificial , Respiratory Distress Syndrome/drug therapy
2.
Int J Med Inform ; 162: 104758, 2022 Apr 02.
Article in English | MEDLINE | ID: covidwho-1783425

ABSTRACT

BACKGROUND: Machine learning (ML) is a subset of Artificial Intelligence (AI) that is used to predict and potentially prevent adverse patient outcomes. There is increasing interest in the application of these models in digital hospitals to improve clinical decision-making and chronic disease management, particularly for patients with diabetes. The potential of ML models using electronic medical records (EMR) to improve the clinical care of hospitalised patients with diabetes is currently unknown. OBJECTIVE: The aim was to systematically identify and critically review the published literature examining the development and validation of ML models using EMR data for improving the care of hospitalised adult patients with diabetes. METHODS: The Preferred Reporting Items for Systematic Reviews and Meta Analyses (PRISMA) guidelines were followed. Four databases were searched (Embase, PubMed, IEEE and Web of Science) for studies published between January 2010 to January 2022. The reference lists of the eligible articles were manually searched. Articles that examined adults and both developed and validated ML models using EMR data were included. Studies conducted in primary care and community care settings were excluded. Studies were independently screened and data was extracted using Covidence® systematic review software. For data extraction and critical appraisal, the Checklist for Critical Appraisal and Data Extraction for Systematic Reviews of Prediction Modelling Studies (CHARMS) was followed. Risk of bias was assessed using the Prediction model Risk Of Bias Assessment Tool (PROBAST). Quality of reporting was assessed by adherence to the Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis (TRIPOD) guideline. The IJMEDI checklist was followed to assess quality of ML models and the reproducibility of their outcomes. The external validation methodology of the studies was appraised. RESULTS: Of the 1317 studies screened, twelve met inclusion criteria. Eight studies developed ML models to predict disglycaemic episodes for hospitalized patients with diabetes, one study developed a ML model to predict total insulin dosage, two studies predicted risk of readmission, and one study improved the prediction of hospital readmission for inpatients with diabetes. All included studies were heterogeneous with regard to ML types, cohort, input predictors, sample size, performance and validation metrics and clinical outcomes. Two studies adhered to the TRIPOD guideline. The methodological reporting of all the studies was evaluated to be at high risk of bias. The quality of ML models in all studies was assessed as poor. Robust external validation was not performed on any of the studies. No models were implemented or evaluated in routine clinical care. CONCLUSIONS: This review identified a limited number of ML models which were developed to improve inpatient management of diabetes. No ML models were implemented in real hospital settings. Future research needs to enhance the development, reporting and validation steps to enable ML models for integration into routine clinical care.

3.
EuropePMC; 2022.
Preprint in English | EuropePMC | ID: ppcovidwho-331066

ABSTRACT

Background: Acute kidney injury (AKI) is one of the most common and significant problems in patients with COVID-19. However, little is known about the incidence and impact of AKI occurring in the community or early in the hospital admission. The traditional KDIGO definition can fail to identify patients for whom hospitalization coincides with recovery of AKI as manifested by a decrease in serum creatinine (sCr). We hypothesized that an extended KDIGO definition, adapted from the International Society of Nephrology 0by25 studies, would identify more cases of AKI in patients with COVID-19 and that these may correspond to community-acquired AKI with similarly poor outcomes as previously reported in this population.   Methods and Findings: All individuals in the ISARIC cohort admitted to hospital with SARS-CoV-2 infection from February 15th, 2020, to February 1st, 2021, were included in the study. Data was collected and analysed for the duration of a patient’s admission. Incidence, staging and timing of AKI were evaluated using a traditional and extended KDIGO (eKDIGO) definition which incorporated a commensurate decrease in serum creatinine. Patients within eKDIGO diagnosed with AKI by a decrease in sCr were labelled as deKDIGO. Clinical characteristic and outcomes – intensive care unit (ICU) admission, invasive mechanical ventilation and in-hospital death - were compared for all three groups of patients. The relationship between eKDIGO AKI and in-hospital death was assessed using survival curves and logistic regression, adjusting for disease severity and AKI susceptibility. 75,670 patients from 54 countries were included in the final analysis cohort. Median length of admission was 12 days (IQR 7, 20). There were twice as many patients with AKI identified by eKDIGO than KDIGO (31.7 vs 16.8%). Those in the eKDIGO group had a greater proportion of stage 1 AKI (58% vs 36% in KDIGO patients). Peak AKI occurred early in the admission more frequently among eKDIGO than KDIGO patients. Compared to those without AKI, patients in the eKDIGO group had worse renal function on admission, more in-hospital complications, higher rates of ICU admission (54% vs 23%) invasive ventilation (45% vs 15%) and increased mortality (38% vs 19%). Patients in the eKDIGO group had a higher risk of in-hospital death than those without AKI (adjusted OR: 1.78, 95% confidence interval: 1.71-1.8, p-value < 0.001).  Mortality and rate of ICU admission were lower among deKDIGO than KDIGO patients (25% vs 50% death and 35% vs 70% ICU admission) but significantly higher when compared to patients with no AKI (25% vs 19% death and 35% vs 23% ICU admission) (all p values < 5x10-5). Limitations include ad hoc sCr sampling, exclusion of patients with less than two sCr measurements, and limited availability of sCr measurements prior to initiation of acute dialysis.   Conclusions: The use of an extended KDIGO definition to diagnose AKI in this population resulted in a significantly higher incidence rate compared to traditional KDIGO criteria. These additional cases of AKI appear to be occurring in the community or early in the hospital admission and are associated with worse outcomes than those without AKI.

4.
ERJ Open Res ; 8(1)2022 Jan.
Article in English | MEDLINE | ID: covidwho-1690978

ABSTRACT

Due to the large number of patients with severe coronavirus disease 2019 (COVID-19), many were treated outside the traditional walls of the intensive care unit (ICU), and in many cases, by personnel who were not trained in critical care. The clinical characteristics and the relative impact of caring for severe COVID-19 patients outside the ICU is unknown. This was a multinational, multicentre, prospective cohort study embedded in the International Severe Acute Respiratory and Emerging Infection Consortium World Health Organization COVID-19 platform. Severe COVID-19 patients were identified as those admitted to an ICU and/or those treated with one of the following treatments: invasive or noninvasive mechanical ventilation, high-flow nasal cannula, inotropes or vasopressors. A logistic generalised additive model was used to compare clinical outcomes among patients admitted or not to the ICU. A total of 40 440 patients from 43 countries and six continents were included in this analysis. Severe COVID-19 patients were frequently male (62.9%), older adults (median (interquartile range (IQR), 67 (55-78) years), and with at least one comorbidity (63.2%). The overall median (IQR) length of hospital stay was 10 (5-19) days and was longer in patients admitted to an ICU than in those who were cared for outside the ICU (12 (6-23) days versus 8 (4-15) days, p<0.0001). The 28-day fatality ratio was lower in ICU-admitted patients (30.7% (5797 out of 18 831) versus 39.0% (7532 out of 19 295), p<0.0001). Patients admitted to an ICU had a significantly lower probability of death than those who were not (adjusted OR 0.70, 95% CI 0.65-0.75; p<0.0001). Patients with severe COVID-19 admitted to an ICU had significantly lower 28-day fatality ratio than those cared for outside an ICU.

5.
EuropePMC; 2021.
Preprint in English | EuropePMC | ID: ppcovidwho-306446

ABSTRACT

Background: Risk factors associated with mortality in patients with coronavirus disease 2019 (COVID-19) on mechanical ventilation are still not fully elucidated. Thus, we aimed to identify patient-level factors, readily available at the bedside, associated with the risk of in-hospital mortality within 28 days from commencement of invasive mechanical ventilation (28-day IMV mortality) in patients with COVID-19. Methods: Prospective observational cohort study in 148 intensive care units in the global COVID-19 Critical Care Consortium . Patients with clinically suspected or laboratory confirmed COVID-19 infection admitted to the intensive care unit (ICU) from February 2 nd through December 29th, 2020, requiring IMV. No study-specific interventions were performed. Patient characteristics and clinical data were assessed upon ICU admission, the commencement of IMV and for 28 days thereafter. We primarily aimed to identify time-independent and time-dependent risk factors for 28-day IMV mortality. Results: : A total of 1713 patients were included in the survival analysis, 588 patients died in hospital within 28 days of commencing IMV (34.3%). Cox-regression analysis identified associations between the hazard of 28-day IMV mortality with age (HR 1.27 per 10-year increase in age, 95% CI 1.17 to 1.37, P<0.001), PEEP upon commencement of IMV (HR 0.78 per 5-cmH 2 O increase, 95% CI 0.66-0.93, P=0.005). Time-dependent parameters associated with 28-day IMV mortality were serum creatinine (HR 1.30 per doubling, 95% CI 1.19-1.42, P<0.001), lactate (HR 1.16 per doubling, 95% CI 1.06-1.27 P=0.001), PaCO 2 (HR 1.31 per doubling, 95% CI 1.05-1.64, P=0.015), pH (HR 0.82 per 0.1 increase, 95% CI 0.74-0.91, P<0.001), PaO 2 /FiO 2 (HR 0.56 per doubling, 95% CI 0.50-0.62, P<0.001) and mean arterial pressure (HR 0.92 per 10 mmHg increase, 95% CI 0.88-0.97, P=0.002). Conclusions: : This international study establishes that in mechanically ventilated patients with COVID-19, older age and clinically relevant variables monitored at the bedside are risk factors for 28-day IMV mortality. Further investigation is warranted to validate any causative roles these parameters might play in influencing clinical outcomes.

6.
EuropePMC; 2020.
Preprint in English | EuropePMC | ID: ppcovidwho-306445

ABSTRACT

Background: Heterogeneous respiratory system static compliance (C RS ) values and levels of hypoxemia in patients with novel coronavirus disease (COVID-19) requiring mechanical ventilation have been reported in previous small-case series or studies conducted at a national level. Methods We designed a retrospective observational cohort study with rapid data gathering from the international COVID-19 Critical Care Consortium study to comprehensively describe the impact of C RS on the ventilatory management and outcomes of COVID-19 patients on mechanical ventilation (MV), admitted to intensive care units (ICU) worldwide. Results We enrolled 318 COVID-19 patients enrolled into the study from January 14th through September 31th, 2020 in 19 countries and stratified into two C RS groups. C RS was calculated as: tidal volume/[airway plateau pressure-positive end-expiratory pressure (PEEP)] and available within 48 h from commencement of MV in 318 patients. Patients were mean ± SD of 58.0 ± 12.2, predominantly from Europe (54%) and males (68%). Median C RS (IQR) was 34.1 mL/cmH 2 O (26.5–45.5) and PaO 2 /FiO 2 was 119 mmHg (87.1–164) and was not correlated with C RS . Female sex presented lower C RS than in males (95% CI: -13.8 to -8.5 P < 0.001) and higher body mass index (34.7 ± 10.9 vs 29.1 ± 6.0, p < 0.001). Median (IQR) PEEP was 12 cmH 2 O (10–15), throughout the range of C RS , while median (IQR) driving pressure was 12.3 (10–15) cmH 2 O and significantly decreased as C RS improved (p < 0.001). No differences were found in comorbidities and clinical management between C RS strata. In addition, 28-day ICU mortality and hospital mortality did not differ between C RS groups. Conclusions This multicentre report provides a comprehensive account of C RS in COVID-19 patients on MV – predominantly males or overweight females, in their late 50 s – admitted to ICU during the first international outbreaks. Phenotypes associated with different C RS upon commencement of MV could not be identified. Trial documentation: Available at https://www.covid-critical.com/study. Trial registration ACTRN12620000421932.

7.
ERJ open research ; 2021.
Article in English | EuropePMC | ID: covidwho-1610380

ABSTRACT

Due to the large number of patients with severe COVID-19, many were treated outside of the traditional walls of the ICU, and in many cases, by personnel who were not trained in critical care. The clinical characteristics and the relative impact of caring for severe COVID-19 patients outside of the ICU is unknown. This was a multinational, multicentre, prospective cohort study embedded in the ISARIC WHO COVID-19 platform. Severe COVID-19 patients were identified as those admitted to an ICU and/or those treated with one of the following treatments: invasive or non-invasive mechanical ventilation, high-flow nasal cannula, inotropes, and vasopressors. A logistic Generalised Additive Model was used to compare clinical outcomes among patients admitted and not to the ICU. A total of 40 440 patients from 43 countries and six continents were included in this analysis. Severe COVID-19 patients were frequently male (62.9%), older adults (median [IQR], 67 years [55, 78]), and with at least one comorbidity (63.2%). The overall median (IQR) length of hospital stay was 10 days (5–19) and was longer in patients admitted to an ICU than in those that were cared for outside of ICU (12 [6–23] versus 8 [4–15] days, p<0.0001). The 28-day fatality ratio was lower in ICU-admitted patients (30.7% [5797/18831] versus 39.0% [7532/19295], p<0.0001). Patients admitted to an ICU had a significantly lower probability of death than those who were not (adjusted OR:0.70, 95%CI: 0.65-0.75, p<0.0001). Patients with severe COVID-19 admitted to an ICU had significantly lower 28-day fatality ratio than those cared for outside of an ICU.

8.
Crit Care Explor ; 3(11): e0567, 2021 Nov.
Article in English | MEDLINE | ID: covidwho-1515112

ABSTRACT

Factors associated with mortality in coronavirus disease 2019 patients on invasive mechanical ventilation are still not fully elucidated. OBJECTIVES: To identify patient-level parameters, readily available at the bedside, associated with the risk of in-hospital mortality within 28 days from commencement of invasive mechanical ventilation or coronavirus disease 2019. DESIGN SETTING AND PARTICIPANTS: Prospective observational cohort study by the global Coronavirus Disease 2019 Critical Care Consortium. Patients with laboratory-confirmed coronavirus disease 2019 requiring invasive mechanical ventilation from February 2, 2020, to May 15, 2021. MAIN OUTCOMES AND MEASURES: Patient characteristics and clinical data were assessed upon ICU admission, the commencement of invasive mechanical ventilation and for 28 days thereafter. We primarily aimed to identify time-independent and time-dependent risk factors for 28-day invasive mechanical ventilation mortality. RESULTS: One-thousand five-hundred eighty-seven patients were included in the survival analysis; 588 patients died in hospital within 28 days of commencing invasive mechanical ventilation (37%). Cox-regression analysis identified associations between the hazard of 28-day invasive mechanical ventilation mortality with age (hazard ratio, 1.26 per 10-yr increase in age; 95% CI, 1.16-1.37; p < 0.001), positive end-expiratory pressure upon commencement of invasive mechanical ventilation (hazard ratio, 0.81 per 5 cm H2O increase; 95% CI, 0.67-0.97; p = 0.02). Time-dependent parameters associated with 28-day invasive mechanical ventilation mortality were serum creatinine (hazard ratio, 1.28 per doubling; 95% CI, 1.15-1.41; p < 0.001), lactate (hazard ratio, 1.22 per doubling; 95% CI, 1.11-1.34; p < 0.001), Paco2 (hazard ratio, 1.63 per doubling; 95% CI, 1.19-2.25; p < 0.001), pH (hazard ratio, 0.89 per 0.1 increase; 95% CI, 0.8-14; p = 0.041), Pao2/Fio2 (hazard ratio, 0.58 per doubling; 95% CI, 0.52-0.66; p < 0.001), and mean arterial pressure (hazard ratio, 0.92 per 10 mm Hg increase; 95% CI, 0.88-0.97; p = 0.003). CONCLUSIONS AND RELEVANCE: This international study suggests that in patients with coronavirus disease 2019 on invasive mechanical ventilation, older age and clinically relevant variables monitored at baseline or sequentially during the course of invasive mechanical ventilation are associated with 28-day invasive mechanical ventilation mortality hazard. Further investigation is warranted to validate any causative roles these parameters might play in influencing clinical outcomes.

9.
Crit Care ; 25(1): 199, 2021 06 09.
Article in English | MEDLINE | ID: covidwho-1262513

ABSTRACT

BACKGROUND: Heterogeneous respiratory system static compliance (CRS) values and levels of hypoxemia in patients with novel coronavirus disease (COVID-19) requiring mechanical ventilation have been reported in previous small-case series or studies conducted at a national level. METHODS: We designed a retrospective observational cohort study with rapid data gathering from the international COVID-19 Critical Care Consortium study to comprehensively describe CRS-calculated as: tidal volume/[airway plateau pressure-positive end-expiratory pressure (PEEP)]-and its association with ventilatory management and outcomes of COVID-19 patients on mechanical ventilation (MV), admitted to intensive care units (ICU) worldwide. RESULTS: We studied 745 patients from 22 countries, who required admission to the ICU and MV from January 14 to December 31, 2020, and presented at least one value of CRS within the first seven days of MV. Median (IQR) age was 62 (52-71), patients were predominantly males (68%) and from Europe/North and South America (88%). CRS, within 48 h from endotracheal intubation, was available in 649 patients and was neither associated with the duration from onset of symptoms to commencement of MV (p = 0.417) nor with PaO2/FiO2 (p = 0.100). Females presented lower CRS than males (95% CI of CRS difference between females-males: - 11.8 to - 7.4 mL/cmH2O p < 0.001), and although females presented higher body mass index (BMI), association of BMI with CRS was marginal (p = 0.139). Ventilatory management varied across CRS range, resulting in a significant association between CRS and driving pressure (estimated decrease - 0.31 cmH2O/L per mL/cmH20 of CRS, 95% CI - 0.48 to - 0.14, p < 0.001). Overall, 28-day ICU mortality, accounting for the competing risk of being discharged within the period, was 35.6% (SE 1.7). Cox proportional hazard analysis demonstrated that CRS (+ 10 mL/cm H2O) was only associated with being discharge from the ICU within 28 days (HR 1.14, 95% CI 1.02-1.28, p = 0.018). CONCLUSIONS: This multicentre report provides a comprehensive account of CRS in COVID-19 patients on MV. CRS measured within 48 h from commencement of MV has marginal predictive value for 28-day mortality, but was associated with being discharged from ICU within the same period. Trial documentation: Available at https://www.covid-critical.com/study . TRIAL REGISTRATION: ACTRN12620000421932.


Subject(s)
COVID-19/complications , COVID-19/therapy , Lung Compliance/physiology , Respiration, Artificial/methods , Respiratory Distress Syndrome/etiology , Respiratory Distress Syndrome/therapy , Adult , Cohort Studies , Critical Care/methods , Europe , Female , Humans , Intensive Care Units , Male , Middle Aged , Retrospective Studies , Severity of Illness Index
10.
Anaesth Intensive Care ; 49(2): 105-111, 2021 Mar.
Article in English | MEDLINE | ID: covidwho-1052354

ABSTRACT

The COVID-19 pandemic has required intensive care units to rapidly adjust and adapt their existing practices. Although there has a focus on expanding critical care infrastructure, equipment and workforce, plans have not emphasised the need to increase digital capabilities. The objective of this report was to recognise key areas of digital health related to the COVID-19 response. We identified and explored six focus areas relevant to intensive care, including using digital solutions to increase critical care capacity, developing surge capacity within an electronic health record, maintenance and downtime planning, training considerations and the role of data analytics. This article forms the basis of a framework for the intensive care digital health response to COVID-19 and other emerging infectious disease outbreaks.


Subject(s)
COVID-19 , Critical Care , Disease Outbreaks , Humans , Pandemics , SARS-CoV-2
11.
BMJ Open ; 10(12): e041417, 2020 12 02.
Article in English | MEDLINE | ID: covidwho-955461

ABSTRACT

INTRODUCTION: There is a paucity of data that can be used to guide the management of critically ill patients with COVID-19. In response, a research and data-sharing collaborative-The COVID-19 Critical Care Consortium-has been assembled to harness the cumulative experience of intensive care units (ICUs) worldwide. The resulting observational study provides a platform to rapidly disseminate detailed data and insights crucial to improving outcomes. METHODS AND ANALYSIS: This is an international, multicentre, observational study of patients with confirmed or suspected SARS-CoV-2 infection admitted to ICUs. This is an evolving, open-ended study that commenced on 1 January 2020 and currently includes >350 sites in over 48 countries. The study enrols patients at the time of ICU admission and follows them to the time of death, hospital discharge or 28 days post-ICU admission, whichever occurs last. Key data, collected via an electronic case report form devised in collaboration with the International Severe Acute Respiratory and Emerging Infection Consortium/Short Period Incidence Study of Severe Acute Respiratory Illness networks, include: patient demographic data and risk factors, clinical features, severity of illness and respiratory failure, need for non-invasive and/or mechanical ventilation and/or extracorporeal membrane oxygenation and associated complications, as well as data on adjunctive therapies. ETHICS AND DISSEMINATION: Local principal investigators will ensure that the study adheres to all relevant national regulations, and that the necessary approvals are in place before a site may contribute data. In jurisdictions where a waiver of consent is deemed insufficient, prospective, representative or retrospective consent will be obtained, as appropriate. A web-based dashboard has been developed to provide relevant data and descriptive statistics to international collaborators in real-time. It is anticipated that, following study completion, all de-identified data will be made open access. TRIAL REGISTRATION NUMBER: ACTRN12620000421932 (http://anzctr.org.au/ACTRN12620000421932.aspx).


Subject(s)
COVID-19/therapy , Intensive Care Units/statistics & numerical data , Registries , COVID-19/mortality , Evidence-Based Medicine , Global Health , Humans , Observational Studies as Topic , Outcome Assessment, Health Care , Pandemics , Pragmatic Clinical Trials as Topic , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL