Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
1.
J Med Virol ; 2022 Apr 14.
Article in English | MEDLINE | ID: covidwho-1797822

ABSTRACT

INTRODUCTION: To mitigate SARS-CoV-2 transmission, eight vaccines have been urgently approved. With their limited availability, it is critical to distribute the vaccines reasonably. METHODS: We simulated the SARS-CoV-2 transmission for 365 days over four intervention periods: free transmission, structural mitigation, personal mitigation, and vaccination. Sensitivity analyses were performed to obtain the robust results. We further evaluated two proposed vaccination allocations, including one-dose-high-coverage and two-doses-low-coverage, when the supply was low. RESULTS: The infected rate (in 10 million people) reduced from 2.68 to 2.36 and 33.35% and 40.54% confirmed cases can be avoided as the nonpharmaceutical interventions (NPIs) adherence rate rose from 50% to 70%. As the vaccination coverage reached 60% and 80%, the total infections can be reduced by about 32.72% and 41.19%, compared to the number without vaccination. When the duration of immunity was 90 and 120 days, the infected rate was 2.67 and 2.38. As asymptomatic infection rate rose from 30% to 50%, the infected rate was 1.92 (standard deviation [SD], 0.16) times higher. Condistion on 70% adherence rate, with the same amount of limited available vaccines, the 20% and 40% vaccination coverage of one-dose-high-coverage, the infected rate were 2.70 and 2.35; corresponding to the two-doses-low-coverage with 10% and 20% vaccination coverage, the number of infections were 3.22and 2.92. Our results indicated as the duration of immunity prolonged, the second wave of SARS-CoV-2 will be delayed and the scale will be declined. On average, the total infections in two-doses-low-coverage was 1.48 times (SD, 0.24) higher than that in one-dose-high-coverage. CONCLUSION: It is crucial to encourage people to vaccinate in establishing immune barriers. Especially, when the supply is limit, a wiser strategy to restrict the SARS-CoV-2 transmission is equally distributing doses to the same amounts of individuals. Despite vaccination, it still needs NPIs to prevent widespread outbreaks. This article is protected by copyright. All rights reserved.

2.
PLoS Pathog ; 18(3): e1010366, 2022 Mar.
Article in English | MEDLINE | ID: covidwho-1793485

ABSTRACT

Tryptophan (Trp) metabolism through the kynurenine pathway (KP) is well known to play a critical function in cancer, autoimmune and neurodegenerative diseases. However, its role in host-pathogen interactions has not been characterized yet. Herein, we identified that kynurenine-3-monooxygenase (KMO), a key rate-limiting enzyme in the KP, and quinolinic acid (QUIN), a key enzymatic product of KMO enzyme, exerted a novel antiviral function against a broad range of viruses. Mechanistically, QUIN induced the production of type I interferon (IFN-I) via activating the N-methyl-d-aspartate receptor (NMDAR) and Ca2+ influx to activate Calcium/calmodulin-dependent protein kinase II (CaMKII)/interferon regulatory factor 3 (IRF3). Importantly, QUIN treatment effectively inhibited viral infections and alleviated disease progression in mice. Furthermore, kmo-/- mice were vulnerable to pathogenic viral challenge with severe clinical symptoms. Collectively, our results demonstrated that KMO and its enzymatic product QUIN were potential therapeutics against emerging pathogenic viruses.

3.
Front Immunol ; 12: 785599, 2021.
Article in English | MEDLINE | ID: covidwho-1643498

ABSTRACT

Zinc ion as an enzyme cofactor exhibits antiviral and anti-inflammatory activity during infection, but circulating zinc ion level during Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection is unclear. This study aimed to evaluate serum zinc ion level in Coronavirus Disease 2019 (COVID-19) patients and healthy subjects, as well as its correlation with antibodies against SARS-CoV-2. 114 COVID-19 patients and 48 healthy subjects (38 healthy volunteers and 10 close contacts of patients with COVID-19) were included. Zinc ion concentration and levels of antibodies against SARS-CoV-2 Spike 1 + Spike 2 proteins, nucleocapsid protein, and receptor-binding domain in serum were measured. Results showed that the concentration of zinc ion in serum from COVID-19 patients [median: 6.4 nmol/mL (IQR 1.5 - 12.0 nmol/mL)] were significantly lower than that from the healthy subjects [median: 15.0 nmol/mL (IQR 11.9 - 18.8 nmol/mL)] (p < 0.001) and the difference remained significant after age stratification (p < 0.001) or when the patients were at the recovery stage (p < 0.001). Furthermore, COVID-19 patients with more severe hypozincemia showed higher levels of IgG against the receptor-binding domain of SARS-CoV-2 spike protein. Further studies to confirm the effect of zinc supplementation on improving the outcomes of COVID-19, including antibody response against SARS-CoV-2, are warranted.


Subject(s)
Antibodies, Viral/blood , COVID-19/blood , COVID-19/immunology , Immunity , SARS-CoV-2/immunology , Zinc/blood , Adult , Antibodies, Viral/immunology , COVID-19/virology , Case-Control Studies , Cations, Divalent/blood , Coronavirus Nucleocapsid Proteins/immunology , Female , Humans , Immunoglobulin G/blood , Immunoglobulin G/immunology , Male , Middle Aged , Phosphoproteins/immunology , Protein Domains/immunology , Real-Time Polymerase Chain Reaction/methods , Retrospective Studies , Reverse Transcriptase Polymerase Chain Reaction/methods , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/immunology
4.
Front Immunol ; 12: 781432, 2021.
Article in English | MEDLINE | ID: covidwho-1634671

ABSTRACT

Despite many studies on the immune characteristics of Coronavirus disease 2019 (COVID-19) patients in the progression stage, a detailed understanding of pertinent immune cells in recovered patients is lacking. We performed single-cell RNA sequencing on samples from recovered COVID-19 patients and healthy controls. We created a comprehensive immune landscape with more than 260,000 peripheral blood mononuclear cells (PBMCs) from 41 samples by integrating our dataset with previously reported datasets, which included samples collected between 27 and 47 days after symptom onset. According to our large-scale single-cell analysis, recovered patients, who had severe symptoms (severe/critical recovered), still exhibited peripheral immune disorders 1-2 months after symptom onset. Specifically, in these severe/critical recovered patients, human leukocyte antigen (HLA) class II and antigen processing pathways were downregulated in both CD14 monocytes and dendritic cells compared to healthy controls, while the proportion of CD14 monocytes increased. These may lead to the downregulation of T-cell differentiation pathways in memory T cells. However, in the mild/moderate recovered patients, the proportion of plasmacytoid dendritic cells increased compared to healthy controls, accompanied by the upregulation of HLA-DRA and HLA-DRB1 in both CD14 monocytes and dendritic cells. In addition, T-cell differentiation regulation and memory T cell-related genes FOS, JUN, CD69, CXCR4, and CD83 were upregulated in the mild/moderate recovered patients. Further, the immunoglobulin heavy chain V3-21 (IGHV3-21) gene segment was preferred in B-cell immune repertoires in severe/critical recovered patients. Collectively, we provide a large-scale single-cell atlas of the peripheral immune response in recovered COVID-19 patients.


Subject(s)
COVID-19/immunology , Dendritic Cells/immunology , Monocytes/immunology , RNA-Seq , SARS-CoV-2/immunology , Single-Cell Analysis , COVID-19/genetics , Female , Humans , Male
5.
Cell Death Differ ; 2022 Jan 08.
Article in English | MEDLINE | ID: covidwho-1612182

ABSTRACT

A recent mutation analysis suggested that Non-Structural Protein 6 (NSP6) of the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is a key determinant of the viral pathogenicity. Here, by transcriptome analysis, we demonstrated that the inflammasome-related NOD-like receptor signaling was activated in SARS-CoV-2-infected lung epithelial cells and Coronavirus Disease 2019 (COVID-19) patients' lung tissues. The induction of inflammasomes/pyroptosis in patients with severe COVID-19 was confirmed by serological markers. Overexpression of NSP6 triggered NLRP3/ASC-dependent caspase-1 activation, interleukin-1ß/18 maturation, and pyroptosis of lung epithelial cells. Upstream, NSP6 impaired lysosome acidification to inhibit autophagic flux, whose restoration by 1α,25-dihydroxyvitamin D3, metformin or polydatin abrogated NSP6-induced pyroptosis. NSP6 directly interacted with ATP6AP1, a vacuolar ATPase proton pump component, and inhibited its cleavage-mediated activation. L37F NSP6 variant, which was associated with asymptomatic COVID-19, exhibited reduced binding to ATP6AP1 and weakened ability to impair lysosome acidification to induce pyroptosis. Consistently, infection of cultured lung epithelial cells with live SARS-CoV-2 resulted in autophagic flux stagnation, inflammasome activation, and pyroptosis. Overall, this work supports that NSP6 of SARS-CoV-2 could induce inflammatory cell death in lung epithelial cells, through which pharmacological rectification of autophagic flux might be therapeutically exploited.

6.
Clin Infect Dis ; 73(11): e4305-e4311, 2021 12 06.
Article in English | MEDLINE | ID: covidwho-1560822

ABSTRACT

BACKGROUND: Nonpharmaceutical interventions (NPIs) against coronavirus disease 2019 (COVID-19) are vital to reducing transmission risks. However, the relative efficiency of social distancing against COVID-19 remains controversial, since social distancing and isolation/quarantine were implemented almost at the same time in China. METHODS: In this study, surveillance data of COVID-19 and seasonal influenza in 2018-2020 were used to quantify the relative efficiency of NPIs against COVID-19 in China, since isolation/quarantine was not used for the influenza epidemics. Given that the relative age-dependent susceptibility to influenza and COVID-19 may vary, an age-structured susceptible/infected/recovered model was built to explore the efficiency of social distancing against COVID-19 under different population susceptibility scenarios. RESULTS: The mean effective reproductive number, Rt, of COVID-19 before NPIs was 2.12 (95% confidence interval [CI], 2.02-2.21). By 11 March 2020, the overall reduction in Rt of COVID-19 was 66.1% (95% CI, 60.1-71.2%). In the epidemiological year 2019-20, influenza transmissibility was reduced by 34.6% (95% CI, 31.3-38.2%) compared with transmissibility in epidemiological year 2018-19. Under the observed contact pattern changes in China, social distancing had similar efficiency against COVID-19 in 3 different scenarios. By assuming the same efficiency of social distancing against seasonal influenza and COVID-19 transmission, isolation/quarantine and social distancing could lead to 48.1% (95% CI, 35.4-58.1%) and 34.6% (95% CI, 31.3-38.2%) reductions of the transmissibility of COVID-19, respectively. CONCLUSIONS: Though isolation/quarantine is more effective than social distancing, given that the typical basic reproductive number of COVID-19 is 2-3, isolation/quarantine alone could not contain the COVID-19 pandemic effectively in China.


Subject(s)
COVID-19 , Influenza, Human , China/epidemiology , Humans , Influenza, Human/epidemiology , Influenza, Human/prevention & control , Pandemics , Physical Distancing , Quarantine , SARS-CoV-2
7.
Sci Rep ; 11(1): 20833, 2021 10 21.
Article in English | MEDLINE | ID: covidwho-1479812

ABSTRACT

Several single-cell RNA sequencing (scRNA-seq) studies analyzing immune response to COVID-19 infection have been recently published. Most of these studies have small sample sizes, which limits the conclusions that can be made with high confidence. By re-analyzing these data in a standardized manner, we validated 8 of the 20 published results across multiple datasets. In particular, we found a consistent decrease in T-cells with increasing COVID-19 infection severity, upregulation of type I Interferon signal pathways, presence of expanded B-cell clones in COVID-19 patients but no consistent trend in T-cell clonal expansion. Overall, our results show that the conclusions drawn from scRNA-seq data analysis of small cohorts of COVID-19 patients need to be treated with some caution.


Subject(s)
Biomarkers/metabolism , COVID-19/immunology , COVID-19/metabolism , RNA, Small Cytoplasmic , Single-Cell Analysis , Bronchoalveolar Lavage Fluid , Computational Biology , Databases, Factual , Gene Expression Profiling/methods , Genome, Human , Genome, Viral , Humans , Immunity , Leukocytes, Mononuclear/cytology , RNA-Seq , Reproducibility of Results , SARS-CoV-2 , Sequence Analysis, RNA/methods , Signal Transduction , Up-Regulation
8.
BMC Public Health ; 21(1): 1750, 2021 09 26.
Article in English | MEDLINE | ID: covidwho-1439532

ABSTRACT

BACKGROUND: The Western Pacific Region (WPR) is exposed each year to seasonal influenza and is often the source of new influenza virus variants and novel pathogen emergence. National influenza surveillance systems play a critical role in detecting emerging viruses, monitoring influenza epidemics, improving public disease awareness and promoting pandemic preparedness, but vary widely across WPR countries. The aim of this study is to improve existing influenza surveillance systems by systematically comparing selected WPR influenza surveillance systems. METHODS: Three national influenza surveillance systems with different levels of development (Australia, China and Malaysia) were compared and their adherence to World Health Organization (WHO) guidance was evaluated using a structured framework previously tested in several European countries consisting of seven surveillance sub-systems, 19 comparable outcomes and five evaluation criteria. Based on the results, experts from the Asia-Pacific Alliance for the Control of Influenza (APACI) issued recommendations for the improvement of existing surveillance systems. RESULTS: Australia demonstrated the broadest scope of influenza surveillance followed by China and Malaysia. In Australia, surveillance tools covered all sub-systems. In China, surveillance did not cover non-medically attended respiratory events, primary care consultations, and excess mortality modelling. In Malaysia, surveillance consisted of primary care and hospital sentinel schemes. There were disparities between the countries across the 5 evaluation criteria, particularly regarding data granularity from health authorities, information on data representativeness, and data communication, especially the absence of publicly available influenza epidemiological reports in Malaysia. This dual approach describing the scope of surveillance and evaluating the adherence to WHO guidance enabled APACI experts to make a number of recommendations for each country that included but were not limited to introducing new surveillance tools, broadening the use of specific existing surveillance tools, collecting and sharing data on virus characteristics, developing immunization status registries, and improving public health communication. CONCLUSIONS: Influenza monitoring in Australia, China, and Malaysia could benefit from the expansion of existing surveillance sentinel schemes, the broadened use of laboratory confirmation and the introduction of excess-mortality modelling. The results from the evaluation can be used as a basis to support expert recommendations and to enhance influenza surveillance capabilities.


Subject(s)
Influenza, Human , Orthomyxoviridae , Australia/epidemiology , China/epidemiology , Humans , Influenza, Human/epidemiology , Influenza, Human/prevention & control , Malaysia/epidemiology
9.
Science ; 373(6557): 918-922, 2021 08 20.
Article in English | MEDLINE | ID: covidwho-1367378

ABSTRACT

Zoonotic avian influenza A virus (IAV) infections are rare. Sustained transmission of these IAVs between humans has not been observed, suggesting a role for host genes. We used whole-genome sequencing to compare avian IAV H7N9 patients with healthy controls and observed a strong association between H7N9 infection and rare, heterozygous single-nucleotide variants in the MX1 gene. MX1 codes for myxovirus resistance protein A (MxA), an interferon-induced antiviral guanosine triphosphatase known to control IAV infections in transgenic mice. Most of the MxA variants identified lost the ability to inhibit avian IAVs, including H7N9, in transfected human cell lines. Nearly all of the inactive MxA variants exerted a dominant-negative effect on the antiviral function of wild-type MxA, suggesting an MxA null phenotype in heterozygous carriers. Our study provides genetic evidence for a crucial role of the MX1-based antiviral defense in controlling zoonotic IAV infections in humans.


Subject(s)
Influenza A Virus, H7N9 Subtype , Influenza, Human/genetics , Influenza, Human/virology , Myxovirus Resistance Proteins/genetics , Agricultural Workers' Diseases/genetics , Agricultural Workers' Diseases/virology , Animals , Cell Line , Genetic Predisposition to Disease , Genetic Variation , Heterozygote , Humans , Influenza A Virus, H7N9 Subtype/physiology , Influenza A virus/physiology , Mutation, Missense , Myxovirus Resistance Proteins/chemistry , Myxovirus Resistance Proteins/metabolism , Poultry , Viral Zoonoses , Whole Genome Sequencing
10.
Front Immunol ; 12: 691879, 2021.
Article in English | MEDLINE | ID: covidwho-1282387

ABSTRACT

Increasing human Adenovirus (HAdV) infections complicated with acute respiratory distress syndrome (ARDS) even fatal outcome were reported in immunocompetent adolescent and adult patients. Here, we characterized the cytokine/chemokine expression profiles of immunocompetent patients complicated with ARDS during HAdV infection and identified biomarkers for disease severity/progression. Forty-eight cytokines/chemokines in the plasma samples from 19 HAdV-infected immunocompetent adolescent and adult patients (ten complicated with ARDS) were measured and analyzed in combination with clinical indices. Immunocompetent patients with ARDS caused by severe acute respiratory disease coronavirus (SARS-CoV)-2, 2009 pandemic H1N1 (panH1N1) or bacteria were included for comparative analyses. Similar indices of disease course/progression were found in immunocompetent patients with ARDS caused by HAdV, SARS-CoV-2 or panH1N infections, whereas the HAdV-infected group showed a higher prevalence of viremia, as well as increased levels of aspartate aminotransferase (AST), alanine aminotransferase (ALT) and creatine kinase (CK). Expression levels of 33 cytokines/chemokines were increased significantly in HAdV-infected patients with ARDS compared with that in healthy controls, and many of them were also significantly higher than those in SARS-CoV-2-infected and panH1N1-infected patients. Expression of interferon (IFN)-γ, interleukin (IL)-1ß, hepatocyte growth factor (HGF), monokine induced by IFN-γ (MIG), IL-6, macrophage-colony stimulating factor (M-CSF), IL-10, IL-1α and IL-2Ra was significantly higher in HAdV-infected patients with ARDS than that in those without ARDS, and negatively associated with the ratio of the partial pressure of oxygen in arterial blood/fraction of inspired oxygen (PaO2/FiO2). Analyses of the receiver operating characteristic curve (ROC) showed that expression of IL-10, M-CSF, MIG, HGF, IL-1ß, IFN-γ and IL-2Ra could predict the progression of HAdV infection, with the highest area under the curve (AUC) of 0.944 obtained for IL-10. Of note, the AUC value for the combination of IL-10, IFN-γ, and M-CSF reached 1. In conclusion, the "cytokine storm" occurred during HAdV infection in immunocompetent patients, and expression of IL-10, M-CSF, MIG, HGF, IL-1ß, IFN-γ and IL-2Ra was closely associated with disease severity and could predict disease progression.


Subject(s)
Adenovirus Infections, Human/blood , Cytokines/blood , Respiratory Distress Syndrome/blood , Adenovirus Infections, Human/complications , Adenovirus Infections, Human/pathology , Adenoviruses, Human , Adolescent , Adult , Bacteria , Bacterial Infections/blood , Bacterial Infections/complications , Bacterial Infections/pathology , Biomarkers/blood , COVID-19/blood , COVID-19/complications , COVID-19/pathology , Disease Progression , Female , Humans , Influenza A Virus, H1N1 Subtype , Influenza, Human/blood , Influenza, Human/complications , Influenza, Human/pathology , Male , Respiratory Distress Syndrome/complications , Respiratory Distress Syndrome/pathology , SARS-CoV-2 , Severity of Illness Index , Viremia/blood , Viremia/complications , Viremia/pathology , Young Adult
11.
Nonlinear Dyn ; 106(2): 1477-1489, 2021.
Article in English | MEDLINE | ID: covidwho-1242810

ABSTRACT

The world is experiencing an ongoing pandemic of coronavirus disease-2019 (COVID-19), which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In attempts to control the pandemic, a range of nonpharmaceutical interventions (NPIs) has been implemented worldwide. However, the effect of synchronized NPIs for the control of COVID-19 at temporal and spatial scales has not been well studied. Therefore, a meta-population model that incorporates essential nonlinear processes was constructed to uncover the transmission characteristics of SARS-CoV-2 and then assess the effectiveness of synchronized NPIs on COVID-19 dynamics in China. Regional synchronization of NPIs was observed in China, and it was found that a combination of synchronized NPIs (the travel restrictions, the social distancing and the infection isolation) prevented 93.7% of SARS-CoV-2 infections. The use of synchronized NPIs at the time of the Wuhan lockdown may have prevented as much as 38% of SARS-CoV-2 infections, compared with the unsynchronized scenario. The interconnectivity of the epicenter, the implementation time of synchronized NPIs, and the number of regions considered all affected the performance of synchronized NPIs. The results highlight the importance of using synchronized NPIs in high-risk regions for the control of COVID-19 and shed light on effective strategies for future pandemic responses. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s11071-021-06505-0.

12.
Brief Bioinform ; 22(5)2021 09 02.
Article in English | MEDLINE | ID: covidwho-1196979

ABSTRACT

The 2019 novel coronavirus (SARS-CoV-2) has spread rapidly worldwide and was declared a pandemic by the WHO in March 2020. The evolution of SARS-CoV-2, either in its natural reservoir or in the human population, is still unclear, but this knowledge is essential for effective prevention and control. We propose a new framework to systematically identify recombination events, excluding those due to noise and convergent evolution. We found that several recombination events occurred for SARS-CoV-2 before its transfer to humans, including a more recent recombination event in the receptor-binding domain. We also constructed a probabilistic mutation network to explore the diversity and evolution of SARS-CoV-2 after human infection. Clustering results show that the novel coronavirus has diverged into several clusters that cocirculate over time in various regions and that several mutations across the genome are fixed during transmission throughout the human population, including D614G in the S gene and two accompanied mutations in ORF1ab. Together, these findings suggest that SARS-CoV-2 experienced a complicated evolution process in the natural environment and point to its continuous adaptation to humans. The new framework proposed in this study can help our understanding of and response to other emerging pathogens.


Subject(s)
Evolution, Molecular , Recombination, Genetic , SARS-CoV-2/genetics , COVID-19/virology , Humans , Phylogeny , Reproducibility of Results
13.
Disease Surveillance ; 35(12):1088-1099, 2020.
Article in Chinese | GIM | ID: covidwho-1190520

ABSTRACT

Objective: The compare transmission efficiency of coronavirus disease 2019 (COVID-19) and influenza A (H1N1) pdm09 by a systematic review based on R<sub>0</sub> calculation.

14.
Disease Surveillance ; 35(12):1068-1072, 2020.
Article in Chinese | GIM | ID: covidwho-1190519

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a natural emerging virus, with rapid virus replication, wide cell tropism, and strong survival ability. Its epidemic characteristics are similar to those of influenza virus. Asymptomatic infections are widespread in a covert way, and the virus has adapted to human population, making it difficult to control the transmission. The global epidemic in 2020/2021 may further deteriorate before the SARS-CoV-2 vaccines are widely applied and show protective effectiveness, and China will still face the risk of continuous overseas multi-channel import and local outbreaks or recurrence of the epidemic. Therefore, it is necessary to carry out further surveillance about the prevalence and infection of SARS-CoV-2 in the population and the corresponding environment of the high-risk areas in China, and establish a national super mobile SARS-CoV-2 detection network laboratory for performing ultra-large-scale testing tasks;implement differentiated vaccination strategies and closely follow up and monitor the effectiveness and efficiency of vaccination;and continue to strengthen effective public health measures such as wearing masks, washing hands frequently, keeping social distances, opening windows frequently, and reducing gatherings. The coronavirus disease 2019 (COVID-19) epidemic warns us once again that the continuous emergence of new infectious diseases caused by unknown pathogens of wild animal origin has become the new normal status. It is necessary to systematically carry out unknown microbial discovery and reverse pathogenic etiology research in a prospective manner, and actively defend against emerging infectious diseases in the future.

15.
Front Immunol ; 12: 632814, 2021.
Article in English | MEDLINE | ID: covidwho-1150691

ABSTRACT

Increasing evidence suggests that dysregulated immune responses are associated with the clinical outcome of coronavirus disease 2019 (COVID-19). Nucleocapsid protein (NP)-, spike (S)-, receptor binding domain (RBD)- specific immunoglobulin (Ig) isotypes, IgG subclasses and neutralizing antibody (NAb) were analyzed in 123 serum from 63 hospitalized patients with severe, moderate, mild or asymptomatic COVID-19. Mild to modest correlations were found between disease severity and antigen specific IgG subclasses in serum, of which IgG1 and IgG3 were negatively associated with viral load in nasopharyngeal swab. Multiple cytokines were significantly related with antigen-specific Ig isotypes and IgG subclasses, and IL-1ß was positively correlated with most antibodies. Furthermore, the old patients (≥ 60 years old) had higher levels of chemokines, increased NAb activities and SARS-CoV-2 specific IgG1, and IgG3 responses and compromised T cell responses compared to the young patients (≤ 18 years old), which are related with more severe cases. Higher IgG1 and IgG3 were found in COVID-19 patients with comorbidities while biological sex had no effect on IgG subclasses. Overall, we have identified diseases severity was related to higher antibodies, of which IgG subclasses had weakly negative correlation with viral load, and cytokines were significantly associated with antibody response. Further, advancing age and comorbidities had obvious effect on IgG1 and IgG3.


Subject(s)
Antibodies, Viral/immunology , COVID-19/immunology , Immunoglobulin G/immunology , SARS-CoV-2/physiology , Adolescent , Adult , COVID-19/pathology , COVID-19/virology , Child , China , Cytokines/immunology , Female , Humans , Immunoglobulin A/immunology , Immunoglobulin M/immunology , Male , Middle Aged , SARS-CoV-2/immunology , Severity of Illness Index , T-Lymphocytes/immunology , Young Adult
16.
Viruses ; 13(2)2021 02 21.
Article in English | MEDLINE | ID: covidwho-1090282

ABSTRACT

With the rapid global spread of the Coronavirus Disease 2019 (COVID-19) pandemic, a safe and effective vaccine against human coronaviruses (HCoVs) is believed to be a top priority in the field of public health. Due to the frequent outbreaks of different HCoVs, the development of a pan-HCoVs vaccine is of great value to biomedical science. The antigen design is a key prerequisite for vaccine efficacy, and we therefore developed a novel antigen with broad coverage based on the genetic algorithm of mosaic strategy. The designed antigen has a potentially broad coverage of conserved cytotoxic T lymphocyte (CTL) epitopes to the greatest extent, including the existing epitopes from all reported HCoV sequences (HCoV-NL63, HCoV-229E, HCoV-OC43, HCoV-HKU1, SARS-CoV, MERS-CoV, and SARS-CoV-2). This novel antigen is expected to induce strong CTL responses with broad coverage by targeting conserved epitopes against multiple coronaviruses.


Subject(s)
Coronavirus Infections/prevention & control , Epitopes, T-Lymphocyte/immunology , Viral Proteins/immunology , Viral Vaccines/immunology , Humans , Pandemics , T-Lymphocytes, Cytotoxic/immunology
17.
Hum Vaccin Immunother ; 17(7): 2279-2288, 2021 07 03.
Article in English | MEDLINE | ID: covidwho-1057794

ABSTRACT

Background: A safe and effective vaccine against COVID-19 has become a public health priority. However, little is known about the public willingness to accept a future COVID-19 vaccine in China. This study aimed to understand the willingness and determinants for the acceptance of a COVID-19 vaccine among Chinese adults.Methods: A cross-sectional survey using an online questionnaire was conducted in an adult population in China. Chi-square tests were used to identify differences for various intentions regarding COVID-19 vaccination. The t test was used to identify differences among vaccine hesitancy scores. Multivariable logistic regression was used to analyze the predicated factors associated with the willingness to receive a COVID-19 vaccine.Results: Of the 3195 eligible participants, 83.8% were willing to receive a COVID-19 vaccine, and 76.6% believed the vaccine would be beneficial to their health; however, 74.9% expressed concerns or a neutral attitude regarding its potential adverse effects. Of the participants, 76.5% preferred domestically manufactured vaccines and were more willing to be vaccinated than those who preferred imported vaccines. Multivariable logistic regression indicated that lack of confidence, complacency in regard to health, risk of the vaccine, and attention frequency were the main factors affecting the intention to receive a COVID-19 vaccine.Conclusion: Our study indicated that the respondents in China had a high willingness to accept a COVID-19 vaccine, but some participants also worried about its adverse effects. Information regarding the efficacy and safety of an upcoming COVID-19 vaccine should be disseminated to ensure its acceptance and coverage.


Subject(s)
COVID-19 Vaccines , COVID-19 , Adult , China , Cross-Sectional Studies , Humans , SARS-CoV-2 , Surveys and Questionnaires , Vaccination
18.
SciFinder; 2020.
Preprint | SciFinder | ID: ppcovidwho-4931

ABSTRACT

A review. This report reviewd the development of the COVID-19 epidemic. The relationship between SARS-CoV-2 and SARS-CoV and MERS-CoV were discussed too.

19.
J Med Internet Res ; 22(11): e23853, 2020 11 11.
Article in English | MEDLINE | ID: covidwho-976121

ABSTRACT

BACKGROUND: The novel COVID-19 disease has spread worldwide, resulting in a new pandemic. The Chinese government implemented strong intervention measures in the early stage of the epidemic, including strict travel bans and social distancing policies. Prioritizing the analysis of different contributing factors to outbreak outcomes is important for the precise prevention and control of infectious diseases. We proposed a novel framework for resolving this issue and applied it to data from China. OBJECTIVE: This study aimed to systematically identify national-level and city-level contributing factors to the control of COVID-19 in China. METHODS: Daily COVID-19 case data and related multidimensional data, including travel-related, medical, socioeconomic, environmental, and influenza-like illness factors, from 343 cities in China were collected. A correlation analysis and interpretable machine learning algorithm were used to evaluate the quantitative contribution of factors to new cases and COVID-19 growth rates during the epidemic period (ie, January 17 to February 29, 2020). RESULTS: Many factors correlated with the spread of COVID-19 in China. Travel-related population movement was the main contributing factor for new cases and COVID-19 growth rates in China, and its contributions were as high as 77% and 41%, respectively. There was a clear lag effect for travel-related factors (previous vs current week: new cases, 45% vs 32%; COVID-19 growth rates, 21% vs 20%). Travel from non-Wuhan regions was the single factor with the most significant impact on COVID-19 growth rates (contribution: new cases, 12%; COVID-19 growth rate, 26%), and its contribution could not be ignored. City flow, a measure of outbreak control strength, contributed 16% and 7% to new cases and COVID-19 growth rates, respectively. Socioeconomic factors also played important roles in COVID-19 growth rates in China (contribution, 28%). Other factors, including medical, environmental, and influenza-like illness factors, also contributed to new cases and COVID-19 growth rates in China. Based on our analysis of individual cities, compared to Beijing, population flow from Wuhan and internal flow within Wenzhou were driving factors for increasing the number of new cases in Wenzhou. For Chongqing, the main contributing factor for new cases was population flow from Hubei, beyond Wuhan. The high COVID-19 growth rates in Wenzhou were driven by population-related factors. CONCLUSIONS: Many factors contributed to the COVID-19 outbreak outcomes in China. The differential effects of various factors, including specific city-level factors, emphasize the importance of precise, targeted strategies for controlling the COVID-19 outbreak and future infectious disease outbreaks.


Subject(s)
COVID-19/epidemiology , Disease Outbreaks/statistics & numerical data , China/epidemiology , Factor Analysis, Statistical , Humans
20.
J Infect Dis ; 222(11): 1780-1783, 2020 11 09.
Article in English | MEDLINE | ID: covidwho-967699

ABSTRACT

To suppress the ongoing COVID-19 pandemic, the Chinese government has implemented nonpharmaceutical interventions (NPIs). Because COVID-19 and influenza have similar means of transmission, NPIs targeting COVID-19 may also affect influenza transmission. In this study, the extent to which NPIs targeting COVID-19 have affected seasonal influenza transmission was explored. Indicators of seasonal influenza activity in the epidemiological year 2019-2020 were compared with those in 2017-2018 and 2018-2019. The incidence rate of seasonal influenza reduced by 64% in 2019-2020 (P < .001). These findings suggest that NPIs aimed at controlling COVID-19 significantly reduced seasonal influenza transmission in China.


Subject(s)
COVID-19/epidemiology , COVID-19/prevention & control , Influenza, Human/epidemiology , Influenza, Human/prevention & control , COVID-19/transmission , COVID-19/virology , China/epidemiology , Communicable Disease Control , Humans , Incidence , Influenza, Human/transmission , Pandemics , Public Health , SARS-CoV-2/isolation & purification , Seasons
SELECTION OF CITATIONS
SEARCH DETAIL