Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
2.
Blood Cancer Discov ; 2022 Mar 09.
Article in English | MEDLINE | ID: covidwho-1736169

ABSTRACT

Patients with B-lymphoid malignancies have been consistently identified as a population at high risk of severe COVID-19. Whether this is exclusively due to cancer-related deficits in humoral and cellular immunity, or whether risk of severe COVID-19 is increased by anti-cancer therapy, is uncertain. Using data derived from the COVID-19 and Cancer Consortium (CCC19), we show that patients treated for B-lymphoid malignancies have an increased risk of severe COVID-19 compared to control populations of patients with non-B-lymphoid hematologic malignancies. Among patients with B-lymphoid malignancies, those who received anti-cancer therapy within 12 months of COVID-19 diagnosis experienced increased COVID-19 severity compared to patients with B-lymphoid malignancies off therapy, after adjustment for cancer status and several other prognostic factors. Our findings suggest that patients recently treated for a B-lymphoid malignancy are at uniquely high risk for severe COVID-19.

3.
Ann Oncol ; 33(3): 340-346, 2022 03.
Article in English | MEDLINE | ID: covidwho-1588323

ABSTRACT

BACKGROUND: Vaccination is an important preventive health measure to protect against symptomatic and severe COVID-19. Impaired immunity secondary to an underlying malignancy or recent receipt of antineoplastic systemic therapies can result in less robust antibody titers following vaccination and possible risk of breakthrough infection. As clinical trials evaluating COVID-19 vaccines largely excluded patients with a history of cancer and those on active immunosuppression (including chemotherapy), limited evidence is available to inform the clinical efficacy of COVID-19 vaccination across the spectrum of patients with cancer. PATIENTS AND METHODS: We describe the clinical features of patients with cancer who developed symptomatic COVID-19 following vaccination and compare weighted outcomes with those of contemporary unvaccinated patients, after adjustment for confounders, using data from the multi-institutional COVID-19 and Cancer Consortium (CCC19). RESULTS: Patients with cancer who develop COVID-19 following vaccination have substantial comorbidities and can present with severe and even lethal infection. Patients harboring hematologic malignancies are over-represented among vaccinated patients with cancer who develop symptomatic COVID-19. CONCLUSIONS: Vaccination against COVID-19 remains an essential strategy in protecting vulnerable populations, including patients with cancer. Patients with cancer who develop breakthrough infection despite full vaccination, however, remain at risk of severe outcomes. A multilayered public health mitigation approach that includes vaccination of close contacts, boosters, social distancing, and mask-wearing should be continued for the foreseeable future.


Subject(s)
COVID-19 , Neoplasms , COVID-19 Vaccines , Humans , Neoplasms/complications , SARS-CoV-2 , Vaccination
4.
J Thorac Oncol ; 17(2): 214-227, 2022 02.
Article in English | MEDLINE | ID: covidwho-1575441

ABSTRACT

Patients with lung cancer are especially vulnerable to coronavirus disease 2019 (COVID-19) with a greater than sevenfold higher rate of becoming infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) COVID-19, a greater than threefold higher hospitalization rate with high complication rates, and an estimated case fatality rate of more than 30%. The reasons for the increased vulnerability are not known. In addition, beyond the direct impact of the pandemic on morbidity and mortality among patients with lung cancer, COVID-19, with its disruption of patient care, has also resulted in substantial impact on lung cancer screening and treatment/management.COVID-19 vaccines are safe and effective in people with lung cancer. On the basis of the available data, patients with lung cancer should continue their course of cancer treatment and get vaccinated against the SARS-CoV-2 virus. For unknown reasons, some patients with lung cancer mount poor antibody responses to vaccination. Thus, boosting vaccination seems urgently indicated in this subgroup of vulnerable patients with lung cancer. Nevertheless, many unanswered questions regarding vaccination in this population remain, including the magnitude, quality, and duration of antibody response and the role of innate and acquired cellular immunities for clinical protection. Additional important knowledge gaps also remain, including the following: how can we best protect patients with lung cancer from developing COVID-19, including managing care in patient with lung cancer and the home environment of patients with lung cancer; are there clinical/treatment demographics and tumor molecular demographics that affect severity of COVID-19 disease in patients with lung cancer; does anticancer treatment affect antibody production and protection; does SARS-CoV-2 infection affect the development/progression of lung cancer; and are special measures and vaccine strategies needed for patients with lung cancer as viral variants of concern emerge.


Subject(s)
COVID-19 , Lung Neoplasms , COVID-19 Vaccines , Early Detection of Cancer , Humans , Lung Neoplasms/therapy , SARS-CoV-2
5.
JAMA Netw Open ; 4(11): e2134330, 2021 11 01.
Article in English | MEDLINE | ID: covidwho-1513769

ABSTRACT

Importance: Androgen deprivation therapy (ADT) has been theorized to decrease the severity of SARS-CoV-2 infection in patients with prostate cancer owing to a potential decrease in the tissue-based expression of the SARS-CoV-2 coreceptor transmembrane protease, serine 2 (TMPRSS2). Objective: To examine whether ADT is associated with a decreased rate of 30-day mortality from SARS-CoV-2 infection among patients with prostate cancer. Design, Setting, and Participants: This cohort study analyzed patient data recorded in the COVID-19 and Cancer Consortium registry between March 17, 2020, and February 11, 2021. The consortium maintains a centralized multi-institution registry of patients with a current or past diagnosis of cancer who developed COVID-19. Data were collected and managed using REDCap software hosted at Vanderbilt University Medical Center in Nashville, Tennessee. Initially, 1228 patients aged 18 years or older with prostate cancer listed as their primary malignant neoplasm were included; 122 patients with a second malignant neoplasm, insufficient follow-up, or low-quality data were excluded. Propensity matching was performed using the nearest-neighbor method with a 1:3 ratio of treated units to control units, adjusted for age, body mass index, race and ethnicity, Eastern Cooperative Oncology Group performance status score, smoking status, comorbidities (cardiovascular, pulmonary, kidney disease, and diabetes), cancer status, baseline steroid use, COVID-19 treatment, and presence of metastatic disease. Exposures: Androgen deprivation therapy use was defined as prior bilateral orchiectomy or pharmacologic ADT administered within the prior 3 months of presentation with COVID-19. Main Outcomes and Measures: The primary outcome was the rate of all-cause 30-day mortality after COVID-19 diagnosis for patients receiving ADT compared with patients not receiving ADT after propensity matching. Results: After exclusions, 1106 patients with prostate cancer (before propensity score matching: median age, 73 years [IQR, 65-79 years]; 561 (51%) self-identified as non-Hispanic White) were included for analysis. Of these patients, 477 were included for propensity score matching (169 who received ADT and 308 who did not receive ADT). After propensity matching, there was no significant difference in the primary end point of the rate of all-cause 30-day mortality (OR, 0.77; 95% CI, 0.42-1.42). Conclusions and Relevance: Findings from this cohort study suggest that ADT use was not associated with decreased mortality from SARS-CoV-2 infection. However, large ongoing clinical trials will provide further evidence on the role of ADT or other androgen-targeted therapies in reducing COVID-19 infection severity.


Subject(s)
Androgen Antagonists/adverse effects , COVID-19/complications , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/mortality , Aged , Aged, 80 and over , Androgen Antagonists/therapeutic use , COVID-19/epidemiology , COVID-19/mortality , Cohort Studies , Humans , Male , Middle Aged , Prostatic Neoplasms/epidemiology , Risk Factors , Tennessee/epidemiology
6.
Blood ; 136(Supplement 1):56-58, 2020.
Article in English | PMC | ID: covidwho-1338999

ABSTRACT

Introduction: Hospitalized patients with COVID-19 may have increased risk of venous thromboembolism (VTE) and pulmonary embolism (PE). Cancer and anti-cancer therapies are well-known additional risk factors for VTE. Nonetheless, the VTE risk in patients with both cancer and COVID-19 infection remains unknown as recent studies have not found an association due to sample size limitations. We report the incidence of and risk factors for VTE and PE among hospitalized patients with cancer and COVID-19.Methods: The COVID-19 and Cancer Consortium (CCC19) developed an international retrospective cohort study (NCT04354701) to investigate the clinical course and complications of COVID-19 among adult patients with an active or previous history of cancer. For the current study, cumulative incidences of clinically detected VTE and PE were analyzed among hospitalized patients with laboratory confirmed SARS-CoV-2. Pre-specified subgroup analysis was performed to examine the interaction between intensive care unit (ICU) admission and recent anti-cancer therapy on VTE outcomes. Bivariable logistic regression analyses were conducted to assess the association between baseline variables and VTE;unadjusted odds ratios (OR) and 95% confidence interval (CI) were reported. These variables included age, sex, obesity (BMI>30), race/ethnicity, performance status, comorbidities, blood type, history of VTE, recent surgery, recent anti-cancer therapy, cancer subtype VTE risk grouping (adapted from Khorana Score), pre-admission anticoagulant or antiplatelet use, and ICU admission status.Results: From March 17, 2020 to July 31, 2020, 3914 patients were enrolled in the CCC19 registry. For the present analysis, patients were excluded if they had inadequate follow-up <4 weeks (n=950), were not admitted to the hospital (n=1008), or had unknown VTE outcomes (n=327). Among the 1629 hospitalized patients, the median follow-up was 35 days. Patients were comprised from 3 countries (92% US, 6% Canada, 2% Spain), with a median age of 70, 45% female, and a median comorbidity score of 3. Racial/ethnic breakdown included 44% White, 26% Black, 14% Hispanic, and 13% Other. A past history of VTE was reported in 9% of patients;pre-admission anticoagulant use and antiplatelet use were reported in 25% and 35% of patients, respectively. The most common cancer types included prostate (18%), breast (15%), and lymphoma (14%). Based on the VTE risk grouping adapted from the original Khorana Score, 34% were low-risk, 29% were high-risk, and 6% were very high-risk. The receipt of anti-cancer therapy within 3 months of diagnosis was observed in 39% of patients (17% cytotoxic chemotherapy, 11% targeted therapy, 7% endocrine therapy, and 5% immunotherapy).The overall incidence of inhospital VTE and PE was 9.3% and 5.2%, respectively. The corresponding estimates were 13.4% and 7.9% among the ICU subgroup. On bivariable analysis, significant predictors of VTE included ICU admission, recent anti-cancer therapy, active cancer status, cancer subtype VTE risk grouping, and pre-admission antiplatelet use (Table 1). Pre-admission anticoagulant use had significant associations with PE but not VTE. Multivariable adjustment is ongoing to identify independent risk factor for VTE and clarify the impact of pre-admission anticoagulant/antiplatelet use controlled for other potential confounders.Both ICU admission status and anti-cancer therapy increased the risk of VTE independently. Non-ICU patients not on anti-cancer therapy had the lowest incidence of VTE (4.5%), whose estimate was similar to that reported in the non-cancer hospitalized population with COVID-19 infection. Patients with either ICU admission or recent anti-cancer therapy had the intermediate risk (11.0%), whereas ICU patients with recent anti-cancer therapy had the highest risk (16.7%). We did not observe confounding or effect modification by the ICU subgroup on the association between anti-cancer therapy and VTE.Conclusion: In this cohort study of hospitalized patients with cancer and COVID-19, recent anti-cancer t erapy, active disease, high-risk VTE cancer subtypes, and ICU admission have increased risk of VTE and PE, while pre-admission anticoagulant/antiplatelet therapy may reduce the risk. This information will aid in developing a risk prediction tool for VTE in hospitalized patients with cancer and COVID-19.

7.
J Thromb Haemost ; 19(10): 2522-2532, 2021 10.
Article in English | MEDLINE | ID: covidwho-1309788

ABSTRACT

BACKGROUND: Hospitalized patients with COVID-19 have increased risks of venous (VTE) and arterial thromboembolism (ATE). Active cancer diagnosis and treatment are well-known risk factors; however, a risk assessment model (RAM) for VTE in patients with both cancer and COVID-19 is lacking. OBJECTIVES: To assess the incidence of and risk factors for thrombosis in hospitalized patients with cancer and COVID-19. METHODS: Among patients with cancer in the COVID-19 and Cancer Consortium registry (CCC19) cohort study, we assessed the incidence of VTE and ATE within 90 days of COVID-19-associated hospitalization. A multivariable logistic regression model specifically for VTE was built using a priori determined clinical risk factors. A simplified RAM was derived and internally validated using bootstrap. RESULTS: From March 17, 2020 to November 30, 2020, 2804 hospitalized patients were analyzed. The incidence of VTE and ATE was 7.6% and 3.9%, respectively. The incidence of VTE, but not ATE, was higher in patients receiving recent anti-cancer therapy. A simplified RAM for VTE was derived and named CoVID-TE (Cancer subtype high to very-high risk by original Khorana score +1, VTE history +2, ICU admission +2, D-dimer elevation +1, recent systemic anti-cancer Therapy +1, and non-Hispanic Ethnicity +1). The RAM stratified patients into two cohorts (low-risk, 0-2 points, n = 1423 vs. high-risk, 3+ points, n = 1034) where VTE occurred in 4.1% low-risk and 11.3% high-risk patients (c statistic 0.67, 95% confidence interval 0.63-0.71). The RAM performed similarly well in subgroups of patients not on anticoagulant prior to admission and moderately ill patients not requiring direct ICU admission. CONCLUSIONS: Hospitalized patients with cancer and COVID-19 have elevated thrombotic risks. The CoVID-TE RAM for VTE prediction may help real-time data-driven decisions in this vulnerable population.


Subject(s)
COVID-19 , Neoplasms , Venous Thromboembolism , Cohort Studies , Humans , Neoplasms/complications , Neoplasms/epidemiology , Risk Assessment , SARS-CoV-2 , Venous Thromboembolism/diagnosis , Venous Thromboembolism/epidemiology
8.
J Emerg Crit Care Med ; 52021 Jan.
Article in English | MEDLINE | ID: covidwho-1285625

ABSTRACT

BACKGROUND: The COVID-19 pandemic has overwhelmed hospital systems in multiple countries and necessitated caring for patients in atypical healthcare settings. The goal of this study was to ascertain if the conventional critical care severity scores qSOFA, SOFA, APACHE-II, and SAPS-II could predict which patients admitted to the hospital from an emergency department would eventually require intensive care. METHODS: This single-center, retrospective cohort study enrolled patients admitted to Vanderbilt University Hospital from the emergency room with symptomatic, confirmed COVID-19 infection between March 8, 2020 through May 15, 2020. Clinical phenotyping was performed by chart abstraction, and the correlation of the qSOFA, SOFA, APACHE-II, and SAPS-II scores for the primary endpoint of ICU admission and secondary endpoint of in-hospital mortality was evaluated. RESULTS: During the study period, 128 patients were admitted to Vanderbilt University Hospital from the emergency room with COVID-19. Of these, 39 patients eventually required intensive care; the remaining 89 were discharged from the medical ward. All severity of illness scores demonstrated at least moderate ability to identify patients who would die or require ICU admission. Of the three severity of illness scores assessed, the APACHE-II score performed best with an AUC of 0.851 (95% CI: 0.786 to 0.917) for identifying patient that would require ICU admission. No patient with an APACHE-II score at the time of presentation less than 8 or qSOFA of 0 required intensive care unit (ICU) admission. All patients with an APACHE-II score less than 10 or qSOFA score of 0 survived to hospital discharge. CONCLUSIONS: The APACHE-II score accurately predicts the eventual need for ICU admission. This may allow for risk-stratification of patients safe to treat in alternative health care settings and prognostic enrichment to accelerate clinical trials of COVID-19 therapies.

9.
Expert Opin Investig Drugs ; 30(2): 111-117, 2021 Feb.
Article in English | MEDLINE | ID: covidwho-1066124

ABSTRACT

Introduction: The COVID-19 pandemic has prompted researchers to conduct non-randomized studies in an effort to find an off-label drug that can effectively combat the virus and its effects. While these studies can expedite the drug approval process, researchers must carefully design and analyze such studies in order to perform rigorous science that is reproducible and credible. This article focuses on several key design and analysis considerations that can improve the scientific rigor of non-randomized studies of off-label drugs. Areas covered: The aim of this article is to provide an overview of best approaches that should be considered for non-randomized studies on off-label drugs. We discuss these approaches in detail and use a non-randomized study by Rivera et al. in Cancer Discovery as an example of methods that have been undertaken for COVID-19. Expert opinion: While non-randomized studies are inherently biased, they may be unavoidable in situations such as the COVID-19 pandemic, where researchers need to find an effective treatment quickly. We believe that a well-formed experimental design, high-quality data collection, and a well-thought-out statistical and data analysis plan are sufficient to produce rigorous and credible results for making an optimal decision.


Subject(s)
COVID-19/drug therapy , Clinical Trials as Topic/methods , Hydroxychloroquine/therapeutic use , Pandemics , Research Design , Data Interpretation, Statistical , Humans , Off-Label Use , Propensity Score , Sensitivity and Specificity , Treatment Outcome
10.
Chest ; 158(4): 1397-1408, 2020 10.
Article in English | MEDLINE | ID: covidwho-996748

ABSTRACT

BACKGROUND: Tocilizumab, an IL-6 receptor antagonist, can be used to treat cytokine release syndrome (CRS), with observed improvements in a coronavirus disease 2019 (COVID-19) case series. RESEARCH QUESTION: The goal of this study was to determine if tocilizumab benefits patients hospitalized with COVID-19. STUDY DESIGN AND METHODS: This observational study of consecutive COVID-19 patients hospitalized between March 10, 2020, and March 31, 2020, and followed up through April 21, 2020, was conducted by chart review. Patients were treated with tocilizumab using an algorithm that targeted CRS. Survival and mechanical ventilation (MV) outcomes were reported for 14 days and stratified according to disease severity designated at admission (severe, ≥ 3 L supplemental oxygen to maintain oxygen saturation > 93%). For tocilizumab-treated patients, pre/post analyses of clinical response, biomarkers, and safety outcomes were assessed. Post hoc survival analyses were conducted for race/ethnicity. RESULTS: Among the 239 patients, median age was 64 years; 36% and 19% were black and Hispanic, respectively. Hospital census increased exponentially, yet MV census did not. Severe disease was associated with lower survival (78% vs 93%; P < .001), greater proportion requiring MV (44% vs 5%; P < .001), and longer median MV days (5.5 vs 1.0; P = .003). Tocilizumab-treated patients (n = 153 [64%]) comprised 90% of those with severe disease; 44% of patients with nonsevere disease received tocilizumab for evolving CRS. Tocilizumab-treated patients with severe disease had higher admission levels of high-sensitivity C-reactive protein (120 vs 71 mg/L; P < .001) and received tocilizumab sooner (2 vs 3 days; P < .001), but their survival was similar to that of patients with nonsevere disease (83% vs 91%; P = .11). For tocilizumab-treated patients requiring MV, survival was 75% (95% CI, 64-89). Following tocilizumab treatment, few adverse events occurred, and oxygenation and inflammatory biomarkers (eg, high-sensitivity C-reactive protein, IL-6) improved; however, D-dimer and soluble IL-2 receptor (also termed CD25) levels increased significantly. Survival in black and Hispanic patients, after controlling for age, was significantly higher than in white patients (log-rank test, P = .002). INTERPRETATION: A treatment algorithm that included tocilizumab to target CRS may influence MV and survival outcomes. In tocilizumab-treated patients, oxygenation and inflammatory biomarkers improved, with higher than expected survival. Randomized trials must confirm these findings.


Subject(s)
Antibodies, Monoclonal, Humanized/therapeutic use , Betacoronavirus , Coronavirus Infections/complications , Coronavirus Infections/therapy , Cytokine Release Syndrome/drug therapy , Cytokine Release Syndrome/virology , Pneumonia, Viral/complications , Pneumonia, Viral/therapy , Adult , Aged , Aged, 80 and over , Algorithms , COVID-19 , Coronavirus Infections/mortality , Cytokine Release Syndrome/mortality , Female , Hospitalization , Humans , Male , Middle Aged , Pandemics , Pneumonia, Viral/mortality , Respiration, Artificial , SARS-CoV-2 , Survival Rate , Treatment Outcome , Young Adult
11.
Cancer Discov ; 10(10): 1514-1527, 2020 10.
Article in English | MEDLINE | ID: covidwho-981743

ABSTRACT

Among 2,186 U.S. adults with invasive cancer and laboratory-confirmed SARS-CoV-2 infection, we examined the association of COVID-19 treatments with 30-day all-cause mortality and factors associated with treatment. Logistic regression with multiple adjustments (e.g., comorbidities, cancer status, baseline COVID-19 severity) was performed. Hydroxychloroquine with any other drug was associated with increased mortality versus treatment with any COVID-19 treatment other than hydroxychloroquine or untreated controls; this association was not present with hydroxychloroquine alone. Remdesivir had numerically reduced mortality versus untreated controls that did not reach statistical significance. Baseline COVID-19 severity was strongly associated with receipt of any treatment. Black patients were approximately half as likely to receive remdesivir as white patients. Although observational studies can be limited by potential unmeasured confounding, our findings add to the emerging understanding of patterns of care for patients with cancer and COVID-19 and support evaluation of emerging treatments through inclusive prospective controlled trials. SIGNIFICANCE: Evaluating the potential role of COVID-19 treatments in patients with cancer in a large observational study, there was no statistically significant 30-day all-cause mortality benefit with hydroxychloroquine or high-dose corticosteroids alone or in combination; remdesivir showed potential benefit. Treatment receipt reflects clinical decision-making and suggests disparities in medication access.This article is highlighted in the In This Issue feature, p. 1426.


Subject(s)
Coronavirus Infections/drug therapy , Drug Utilization/statistics & numerical data , Healthcare Disparities/statistics & numerical data , Neoplasms/mortality , Pneumonia, Viral/drug therapy , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/therapeutic use , Age Factors , Aged , Alanine/analogs & derivatives , Alanine/therapeutic use , Betacoronavirus/pathogenicity , COVID-19 , Clinical Decision-Making , Coronavirus Infections/complications , Coronavirus Infections/diagnosis , Coronavirus Infections/mortality , Drug Therapy, Combination/methods , Drug Therapy, Combination/statistics & numerical data , Follow-Up Studies , Glucocorticoids/therapeutic use , Hospital Mortality , Humans , Hydroxychloroquine/therapeutic use , Male , Middle Aged , Neoplasms/complications , Pandemics , Pneumonia, Viral/complications , Pneumonia, Viral/diagnosis , Pneumonia, Viral/mortality , Risk Factors , SARS-CoV-2 , Severity of Illness Index , Sex Factors , Treatment Outcome , United States/epidemiology
14.
Lancet ; 395(10241): 1907-1918, 2020 06 20.
Article in English | MEDLINE | ID: covidwho-401249

ABSTRACT

BACKGROUND: Data on patients with COVID-19 who have cancer are lacking. Here we characterise the outcomes of a cohort of patients with cancer and COVID-19 and identify potential prognostic factors for mortality and severe illness. METHODS: In this cohort study, we collected de-identified data on patients with active or previous malignancy, aged 18 years and older, with confirmed severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection from the USA, Canada, and Spain from the COVID-19 and Cancer Consortium (CCC19) database for whom baseline data were added between March 17 and April 16, 2020. We collected data on baseline clinical conditions, medications, cancer diagnosis and treatment, and COVID-19 disease course. The primary endpoint was all-cause mortality within 30 days of diagnosis of COVID-19. We assessed the association between the outcome and potential prognostic variables using logistic regression analyses, partially adjusted for age, sex, smoking status, and obesity. This study is registered with ClinicalTrials.gov, NCT04354701, and is ongoing. FINDINGS: Of 1035 records entered into the CCC19 database during the study period, 928 patients met inclusion criteria for our analysis. Median age was 66 years (IQR 57-76), 279 (30%) were aged 75 years or older, and 468 (50%) patients were male. The most prevalent malignancies were breast (191 [21%]) and prostate (152 [16%]). 366 (39%) patients were on active anticancer treatment, and 396 (43%) had active (measurable) cancer. At analysis (May 7, 2020), 121 (13%) patients had died. In logistic regression analysis, independent factors associated with increased 30-day mortality, after partial adjustment, were: increased age (per 10 years; partially adjusted odds ratio 1·84, 95% CI 1·53-2·21), male sex (1·63, 1·07-2·48), smoking status (former smoker vs never smoked: 1·60, 1·03-2·47), number of comorbidities (two vs none: 4·50, 1·33-15·28), Eastern Cooperative Oncology Group performance status of 2 or higher (status of 2 vs 0 or 1: 3·89, 2·11-7·18), active cancer (progressing vs remission: 5·20, 2·77-9·77), and receipt of azithromycin plus hydroxychloroquine (vs treatment with neither: 2·93, 1·79-4·79; confounding by indication cannot be excluded). Compared with residence in the US-Northeast, residence in Canada (0·24, 0·07-0·84) or the US-Midwest (0·50, 0·28-0·90) were associated with decreased 30-day all-cause mortality. Race and ethnicity, obesity status, cancer type, type of anticancer therapy, and recent surgery were not associated with mortality. INTERPRETATION: Among patients with cancer and COVID-19, 30-day all-cause mortality was high and associated with general risk factors and risk factors unique to patients with cancer. Longer follow-up is needed to better understand the effect of COVID-19 on outcomes in patients with cancer, including the ability to continue specific cancer treatments. FUNDING: American Cancer Society, National Institutes of Health, and Hope Foundation for Cancer Research.


Subject(s)
Coronavirus Infections/epidemiology , Neoplasms/epidemiology , Pneumonia, Viral/epidemiology , Aged , Antiviral Agents/therapeutic use , Azithromycin/therapeutic use , Betacoronavirus , COVID-19 , Cause of Death , Comorbidity , Coronavirus Infections/drug therapy , Coronavirus Infections/mortality , Databases, Factual , Female , Humans , Hydroxychloroquine/therapeutic use , Male , Middle Aged , Neoplasms/mortality , Neoplasms/therapy , Pandemics , Pneumonia, Viral/drug therapy , Pneumonia, Viral/mortality , Prognosis , Risk Factors , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL