Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Heart Lung ; 50(5): 700-705, 2021.
Article in English | MEDLINE | ID: covidwho-1252961

ABSTRACT

BACKGROUND: Lung ultrasound can accurately detect pandemic coronavirus disease (COVID-19) pulmonary lesions. A lung ultrasound score (LUS) was developed to improve reproducibility of the technique. OBJECTIVES: To evaluate the clinical value of LUS monitoring to guide COVID-19-associated acute respiratory distress syndrome (ARDS) management. METHODS: We conducted a single center, prospective observational study, including all patients admitted with COVID-19-associated ARDS between March and April 2020. A systematic daily LUS evaluation was performed. RESULTS: Thirty-three consecutive patients were included. LUS was significantly and negatively correlated to PaO2/FIO2. LUS increased significantly over time in non-survivors compared to survivors. LUS increased in 83% of ventilatory associated pneumonia (VAP) episodes, when compared to the previous LUS evaluation. LUS was not significantly higher in patients presenting post-extubation respiratory failure. CONCLUSIONS: In conclusion, our study demonstrates that LUS variations are correlated to disease severity and progression, and LUS monitoring could contribute to the early diagnosis of VAPs.


Subject(s)
COVID-19 , Pneumonia, Ventilator-Associated , Respiratory Distress Syndrome , Disease Progression , Humans , Lung/diagnostic imaging , Pneumonia, Ventilator-Associated/diagnosis , Reproducibility of Results , Respiratory Distress Syndrome/diagnosis , Respiratory Distress Syndrome/etiology , SARS-CoV-2 , Ultrasonography
2.
Diagn Interv Imaging ; 102(5): 305-312, 2021 May.
Article in English | MEDLINE | ID: covidwho-1237673

ABSTRACT

PURPOSE: The purpose of this study was to characterize the technical capabilities and feasibility of a large field-of-view clinical spectral photon-counting computed tomography (SPCCT) prototype for high-resolution (HR) lung imaging. MATERIALS AND METHODS: Measurement of modulation transfer function (MTF) and acquisition of a line pairs phantom were performed. An anthropomorphic lung nodule phantom was scanned with standard (120kVp, 62mAs), low (120kVp, 11mAs), and ultra-low (80kVp, 3mAs) radiation doses. A human volunteer underwent standard (120kVp, 63mAs) and low (120kVp, 11mAs) dose scans after approval by the ethics committee. HR images were reconstructed with 1024 matrix, 300mm field of view and 0.25mm slice thickness using a filtered-back projection (FBP) and two levels of iterative reconstruction (iDose 5 and 9). The conspicuity and sharpness of various lung structures (distal airways, vessels, fissures and proximal bronchial wall), image noise, and overall image quality were independently analyzed by three radiologists and compared to a previous HR lung CT examination of the same volunteer performed with a conventional CT equipped with energy integrating detectors (120kVp, 10mAs, FBP). RESULTS: Ten percent MTF was measured at 22.3lp/cm with a cut-off at 31lp/cm. Up to 28lp/cm were depicted. While mixed and solid nodules were easily depicted on standard and low-dose phantom images, higher iDose levels and slice thicknesses (1mm) were needed to visualize ground-glass components on ultra-low-dose images. Standard dose SPCCT images of in vivo lung structures were of greater conspicuity and sharpness, with greater overall image quality, and similar image noise (despite a flux reduction of 23%) to conventional CT images. Low-dose SPCCT images were of greater or similar conspicuity and sharpness, similar overall image quality, and lower but acceptable image noise (despite a flux reduction of 89%). CONCLUSIONS: A large field-of-view SPCCT prototype demonstrates HR technical capabilities and high image quality for high resolution lung CT in human.


Subject(s)
Lung , Tomography, X-Ray Computed , Algorithms , Feasibility Studies , Humans , Image Processing, Computer-Assisted , Lung/diagnostic imaging , Phantoms, Imaging , Radiation Dosage , Radiographic Image Interpretation, Computer-Assisted
4.
Eur Radiol ; 31(2): 795-803, 2021 Feb.
Article in English | MEDLINE | ID: covidwho-722374

ABSTRACT

OBJECTIVES: To assess the diagnostic performances of chest CT for triage of patients in multiple emergency departments during COVID-19 epidemic, in comparison with reverse transcription polymerase chain reaction (RT-PCR) test. METHOD: From March 3 to April 4, 2020, 694 consecutive patients from three emergency departments of a large university hospital, for which a hospitalization was planned whatever the reasons, i.e., COVID- or non-COVID-related, underwent a chest CT and one or several RT-PCR tests. Chest CTs were rated as "Surely COVID+," "Possible COVID+," or "COVID-" by experienced radiologists. Sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) were calculated using the final RT-PCR test as standard of reference. The delays for CT reports and RT-PCR results were recorded and compared. RESULTS: Among the 694 patients, 287 were positive on the final RT-PCR exam. Concerning the 694 chest CT, 308 were rated as "Surely COVID+", 34 as "Possible COVID+," and 352 as "COVID-." When considering only the "Surely COVID+" CT as positive, accuracy, sensitivity, specificity, PPV, and NPV reached 88.9%, 90.2%, 88%, 84.1%, and 92.7%, respectively, with respect to final RT-PCR test. The mean delay for CT reports was three times shorter than for RT-PCR results (187 ± 148 min versus 573 ± 327 min, p < 0.0001). CONCLUSION: During COVID-19 epidemic phase, chest CT is a rapid and most probably an adequately reliable tool to refer patients requiring hospitalization to the COVID+ or COVID- hospital units, when response times for virological tests are too long. KEY POINTS: • In a large university hospital in Lyon, France, the accuracy, sensitivity, specificity, PPV, and NPV of chest CT for COVID-19 reached 88.9%, 90.2%, 88%, 84.1%, and 92.7%, respectively, using RT-PCR as standard of reference. • The mean delay for CT reports was three times shorter than for RT-PCR results (187 ± 148 min versus 573 ± 327 min, p < 0.0001). • Due to high accuracy of chest CT for COVID-19 and shorter time for CT reports than RT-PCR results, chest CT can be used to orient patients suspected to be positive towards the COVID+ unit to decrease congestion in the emergency departments.


Subject(s)
COVID-19/diagnostic imaging , Triage , Aged , Aged, 80 and over , COVID-19/epidemiology , Emergency Service, Hospital , Epidemics , Female , France , Hospitals, University , Humans , Male , Predictive Value of Tests , SARS-CoV-2 , Time Factors , Tomography, X-Ray Computed
SELECTION OF CITATIONS
SEARCH DETAIL