Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Add filters

Document Type
Year range
Gms Hygiene and Infection Control ; 17, 2022.
Article in English | Web of Science | ID: covidwho-2121321


Background: The measures implemented against the coronavirus pandemic also led to a sharp decline in influenza infections in the 2020/2021 flu season. In the meantime, however, the number of influ-enza infections has risen again;it is known from history that influenza viruses can also trigger severe pandemics. Therefore, we investigated the efficacy of ultraviolet radiation in the spectral range of 200-400 nm for inactivating influenza viruses. Materials and methods: The scientific literature was searched for pub-lished ultraviolet (UV) irradiation experiments with influenza viruses and the results were standardized by determining the lg-reduction dose. The results were then sorted and analyzed by virus type and wavelength as far as possible. Results: The scope of the published data sets was limited and revealed large variations with regard to the lg-reduction dose. Only for experiments with influenza viruses in liquid media in the UVC spectral range around 260 nm - the emission range of commonly-used mercury vapor lamps - was there sufficient data to compare virus types. No significant differ-ence between the virus (sub-) types was observed. The lg-reduction dose in this spectral range is 1.75 mJ/cm2 (median). It was also shown that influenza viruses are particularly sensitive in the far-UVC spectral range (200-230 nm). Conclusion: UVC, including far-UVC, is suited for influenza virus inacti-vation as long as the viruses are in UVC-transparent materials. A large difference in the UV sensitivity of different influenza viruses from the last approx. 100 years could not be detected. Thus, it is reasonable to assume that future influenza viruses will also be similarly UV-sensitive or that UV can also inactivate new influenza viruses.

Current Directions in Biomedical Engineering ; 7(2):239-242, 2021.
Article in English | Scopus | ID: covidwho-1598102


Artificial respiration is saving lives especially in the COVID-19 pandemic, but it also carries the risk to cause ventilator-Associated pneumonia (VAP). VAP is one of the most common and severe nosocomial infections, often leading to death and adding a major economic burden to the healthcare system. To prevent a proliferation of microbial pathogens that cause VAP, an endotracheal tube (ETT) equipped with blue LEDs (LED-ETT) was developed. This blue wavelength exhibits antimicrobial properties but may also harm human tracheal cells at higher irradiances. Therefore, the aim of this study was to find the minimal required irradiance for microbial reduction of 1 log level in 24 h by applying LED-ETTs. A LED-ETT with 48 blue LEDs (450 nm) was fixed in a glass tube, which served as a trachea model. The investigation was carried out with irradiations of 4.2, 6.6 and 13.4 mW/cm² at 37 °C for 24 h. The experiments were performed with Acinetobacter kookii as a surrogate of Acinetobacter baumannii, which is classified as critical by the WHO. Samples of A. kookii suspensions were taken every 4 h during irradiation from the trachea model. Bacteria concentrations were quantified by determining colony forming units (CFU)/ml. A homogeneous irradiance of only 4.2 mW/cm² generated by the blue LEDs, at a LED forward current of 3.125 mA, is sufficient to achieve a 1 log reduction of A. kookii within 24 h. The total irradiation dose within this period was 360 J/cm2. Human cells survive this dose without cellular damage. Previous studies revealed that the pathogen A. baumannii is even more sensitive to blue light than A. kookii. Therefore, blue LED-ETTs are expected to reduce A. baumannii without harming human tracheal cells. © 2021 by Walter de Gruyter Berlin/Boston.